File size: 7,439 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import math
from functools import partial

import numpy as np
from torch.optim import lr_scheduler


class StepLR(object):

    def __init__(self,
                 step_each_epoch,
                 step_size,
                 warmup_epoch=0,
                 gamma=0.1,
                 last_epoch=-1,
                 **kwargs):
        super(StepLR, self).__init__()
        self.step_size = step_each_epoch * step_size
        self.gamma = gamma
        self.last_epoch = last_epoch
        self.warmup_epoch = warmup_epoch

    def __call__(self, optimizer):
        return lr_scheduler.LambdaLR(optimizer, self.lambda_func,
                                     self.last_epoch)

    def lambda_func(self, current_step):
        if current_step < self.warmup_epoch:
            return float(current_step) / float(max(1, self.warmup_epoch))
        return self.gamma**(current_step // self.step_size)


class MultiStepLR(object):

    def __init__(self,
                 step_each_epoch,
                 milestones,
                 warmup_epoch=0,
                 gamma=0.1,
                 last_epoch=-1,
                 **kwargs):
        super(MultiStepLR, self).__init__()
        self.milestones = [step_each_epoch * e for e in milestones]
        self.gamma = gamma
        self.last_epoch = last_epoch
        self.warmup_epoch = warmup_epoch

    def __call__(self, optimizer):
        return lr_scheduler.LambdaLR(optimizer, self.lambda_func,
                                     self.last_epoch)

    def lambda_func(self, current_step):
        if current_step < self.warmup_epoch:
            return float(current_step) / float(max(1, self.warmup_epoch))
        return self.gamma**len(
            [m for m in self.milestones if m <= current_step])


class ConstLR(object):

    def __init__(self,
                 step_each_epoch,
                 warmup_epoch=0,
                 last_epoch=-1,
                 **kwargs):
        super(ConstLR, self).__init__()
        self.last_epoch = last_epoch
        self.warmup_epoch = warmup_epoch * step_each_epoch

    def __call__(self, optimizer):
        return lr_scheduler.LambdaLR(optimizer, self.lambda_func,
                                     self.last_epoch)

    def lambda_func(self, current_step):
        if current_step < self.warmup_epoch:
            return float(current_step) / float(max(1.0, self.warmup_epoch))
        return 1.0


class LinearLR(object):

    def __init__(self,
                 epochs,
                 step_each_epoch,
                 warmup_epoch=0,
                 last_epoch=-1,
                 **kwargs):
        super(LinearLR, self).__init__()
        self.epochs = epochs * step_each_epoch
        self.last_epoch = last_epoch
        self.warmup_epoch = warmup_epoch * step_each_epoch

    def __call__(self, optimizer):
        return lr_scheduler.LambdaLR(optimizer, self.lambda_func,
                                     self.last_epoch)

    def lambda_func(self, current_step):
        if current_step < self.warmup_epoch:
            return float(current_step) / float(max(1, self.warmup_epoch))
        return max(
            0.0,
            float(self.epochs - current_step) /
            float(max(1, self.epochs - self.warmup_epoch)),
        )


class CosineAnnealingLR(object):

    def __init__(self,
                 epochs,
                 step_each_epoch,
                 warmup_epoch=0,
                 last_epoch=-1,
                 **kwargs):
        super(CosineAnnealingLR, self).__init__()
        self.epochs = epochs * step_each_epoch
        self.last_epoch = last_epoch
        self.warmup_epoch = warmup_epoch * step_each_epoch

    def __call__(self, optimizer):
        return lr_scheduler.LambdaLR(optimizer, self.lambda_func,
                                     self.last_epoch)

    def lambda_func(self, current_step, num_cycles=0.5):
        if current_step < self.warmup_epoch:
            return float(current_step) / float(max(1, self.warmup_epoch))
        progress = float(current_step - self.warmup_epoch) / float(
            max(1, self.epochs - self.warmup_epoch))
        return max(
            0.0, 0.5 *
            (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))


class OneCycleLR(object):

    def __init__(self,
                 epochs,
                 step_each_epoch,
                 last_epoch=-1,
                 lr=0.00148,
                 warmup_epoch=1.0,
                 cycle_momentum=True,
                 **kwargs):
        super(OneCycleLR, self).__init__()
        self.epochs = epochs
        self.last_epoch = last_epoch
        self.step_each_epoch = step_each_epoch
        self.lr = lr
        self.pct_start = warmup_epoch / epochs
        self.cycle_momentum = cycle_momentum

    def __call__(self, optimizer):
        return lr_scheduler.OneCycleLR(
            optimizer,
            max_lr=self.lr,
            total_steps=self.epochs * self.step_each_epoch,
            pct_start=self.pct_start,
            cycle_momentum=self.cycle_momentum,
        )


class PolynomialLR(object):

    def __init__(self,
                 step_each_epoch,
                 epochs,
                 lr_end=1e-7,
                 power=1.0,
                 warmup_epoch=0,
                 last_epoch=-1,
                 **kwargs):
        super(PolynomialLR, self).__init__()
        self.lr_end = lr_end
        self.power = power
        self.epochs = epochs * step_each_epoch
        self.warmup_epoch = warmup_epoch * step_each_epoch
        self.last_epoch = last_epoch

    def __call__(self, optimizer):
        lr_lambda = partial(
            self.lambda_func,
            lr_init=optimizer.defaults['lr'],
        )
        return lr_scheduler.LambdaLR(optimizer, lr_lambda, self.last_epoch)

    def lambda_func(self, current_step, lr_init):
        if current_step < self.warmup_epoch:
            return float(current_step) / float(max(1, self.warmup_epoch))
        elif current_step > self.epochs:
            return self.lr_end / lr_init  # as LambdaLR multiplies by lr_init
        else:
            lr_range = lr_init - self.lr_end
            decay_steps = self.epochs - self.warmup_epoch
            pct_remaining = 1 - (current_step -
                                 self.warmup_epoch) / decay_steps
            decay = lr_range * pct_remaining**self.power + self.lr_end
            return decay / lr_init  # as LambdaLR multiplies by lr_init


class CdistNetLR(object):

    def __init__(self,
                 step_each_epoch,
                 lr=0.0442,
                 n_warmup_steps=10000,
                 step2_epoch=7,
                 last_epoch=-1,
                 **kwargs):
        super(CdistNetLR, self).__init__()
        self.last_epoch = last_epoch
        self.step2_epoch = step2_epoch * step_each_epoch
        self.n_current_steps = 0
        self.n_warmup_steps = n_warmup_steps
        self.init_lr = lr
        self.step2_lr = 0.00001

    def __call__(self, optimizer):
        return lr_scheduler.LambdaLR(optimizer, self.lambda_func,
                                     self.last_epoch)

    def lambda_func(self, current_step):
        if current_step < self.step2_epoch:
            return np.min([
                np.power(current_step, -0.5),
                np.power(self.n_warmup_steps, -1.5) * current_step,
            ])
        return self.step2_lr / self.init_lr