Spaces:
Running
Running
File size: 8,478 Bytes
695a4a4 29f689c 1ceafe5 29f689c 1ceafe5 29f689c 695a4a4 1ceafe5 695a4a4 1ceafe5 29f689c 695a4a4 1ceafe5 695a4a4 29f689c 695a4a4 29f689c 695a4a4 29f689c 1ceafe5 29f689c ac9bf47 1ceafe5 29f689c 1ceafe5 695a4a4 1ceafe5 695a4a4 1ceafe5 695a4a4 29f689c 1ceafe5 695a4a4 29f689c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# @Author: OpenOCR
# @Contact: [email protected]
import os
import gradio as gr # gradio==4.20.0
os.environ['FLAGS_allocator_strategy'] = 'auto_growth'
import cv2
import numpy as np
import json
import time
from PIL import Image
from tools.infer_e2e import OpenOCR, check_and_download_font, draw_ocr_box_txt
def initialize_ocr(model_type, drop_score):
return OpenOCR(mode=model_type, drop_score=drop_score)
# Default model type
model_type = 'mobile'
drop_score = 0.4
text_sys = initialize_ocr(model_type, drop_score)
# warm up 5 times
if True:
img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
for i in range(5):
res = text_sys(img_numpy=img)
font_path = './simfang.ttf'
font_path = check_and_download_font(font_path)
def main(input_image,
model_type_select,
det_input_size_textbox=960,
rec_drop_score=0.4,
mask_thresh=0.3,
box_thresh=0.6,
unclip_ratio=1.5,
det_score_mode='slow'):
global text_sys, model_type
# Update OCR model if the model type changes
if model_type_select != model_type:
model_type = model_type_select
text_sys = initialize_ocr(model_type, rec_drop_score)
img = input_image[:, :, ::-1]
starttime = time.time()
results, time_dict, mask = text_sys(img_numpy=img,
return_mask=True,
det_input_size=int(det_input_size_textbox),
thresh=mask_thresh,
box_thresh=box_thresh,
unclip_ratio=unclip_ratio,
score_mode=det_score_mode)
elapse = time.time() - starttime
save_pred = json.dumps(results[0], ensure_ascii=False)
image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
boxes = [res['points'] for res in results[0]]
txts = [res['transcription'] for res in results[0]]
scores = [res['score'] for res in results[0]]
draw_img = draw_ocr_box_txt(
image,
boxes,
txts,
scores,
drop_score=rec_drop_score,
font_path=font_path,
)
mask = mask[0, 0, :, :] > mask_thresh
return save_pred, elapse, draw_img, mask.astype('uint8') * 255
def get_all_file_names_including_subdirs(dir_path):
all_file_names = []
for root, dirs, files in os.walk(dir_path):
for file_name in files:
all_file_names.append(os.path.join(root, file_name))
file_names_only = [os.path.basename(file) for file in all_file_names]
return file_names_only
def list_image_paths(directory):
image_extensions = ('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff')
image_paths = []
for root, dirs, files in os.walk(directory):
for file in files:
if file.lower().endswith(image_extensions):
relative_path = os.path.relpath(os.path.join(root, file),
directory)
full_path = os.path.join(directory, relative_path)
image_paths.append(full_path)
image_paths = sorted(image_paths)
return image_paths
def find_file_in_current_dir_and_subdirs(file_name):
for root, dirs, files in os.walk('.'):
if file_name in files:
relative_path = os.path.join(root, file_name)
return relative_path
e2e_img_example = list_image_paths('./OCR_e2e_img')
if __name__ == '__main__':
css = '.image-container img { width: 100%; max-height: 320px;}'
with gr.Blocks(css=css) as demo:
gr.HTML("""
<h1 style='text-align: center;'><a href="https://github.com/Topdu/OpenOCR">OpenOCR</a></h1>
<p style='text-align: center;'>A general OCR system with accuracy and efficiency (created by <a href="https://github.com/Topdu/OpenOCR">OCR Team</a>, <a href="https://fvl.fudan.edu.cn">FVL Lab</a>) <a href="https://github.com/Topdu/OpenOCR/tree/main?tab=readme-ov-file#quick-start">[Local Deployment]</a></p>""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label='Input image',
elem_classes=['image-container'])
examples = gr.Examples(examples=e2e_img_example,
inputs=input_image,
label='Examples')
downstream = gr.Button('Run')
# 添加参数调节组件
with gr.Column():
with gr.Row():
det_input_size_textbox = gr.Number(
label='Detection Input Size',
value=960,
info='The longest side of the detection network input size, defaults to 960.')
det_score_mode_dropdown = gr.Dropdown(
["slow", "fast"],
value="slow",
label="Det Score Mode",
info="The confidence calculation mode of the text box, the default is slow. Slow mode is slower but more accurate. Fast mode is faster but less accurate."
)
with gr.Row():
rec_drop_score_slider = gr.Slider(
0.0,
1.0,
value=0.01,
step=0.01,
label="Recognition Drop Score",
info="Recognition confidence threshold, default value is 0.01. Recognition results and corresponding text boxes lower than this threshold are discarded.")
mask_thresh_slider = gr.Slider(
0.0,
1.0,
value=0.3,
step=0.01,
label="Mask Threshold",
info="Mask threshold for binarizing masks, defaults to 0.3, turn it down if there is text truncation.")
with gr.Row():
box_thresh_slider = gr.Slider(
0.0,
1.0,
value=0.6,
step=0.01,
label="Box Threshold",
info="Text Box Confidence Threshold, default value is 0.6, turn it down if there is text being missed.")
unclip_ratio_slider = gr.Slider(
1.5,
2.0,
value=1.5,
step=0.05,
label="Unclip Ratio",
info="Expansion factor for parsing text boxes, default value is 1.5. The larger the value, the larger the text box.")
# 模型选择组件
model_type_dropdown = gr.Dropdown(
['mobile', 'server'],
value='mobile',
label='Model Type',
info='Select the type of OCR model: high efficiency model mobile, high accuracy model server.'
)
with gr.Column(scale=1):
img_mask = gr.Image(label='mask',
interactive=False,
elem_classes=['image-container'])
img_output = gr.Image(label=' ',
interactive=False,
elem_classes=['image-container'])
output = gr.Textbox(label='Result')
confidence = gr.Textbox(label='Latency')
downstream.click(fn=main,
inputs=[
input_image, model_type_dropdown, det_input_size_textbox, rec_drop_score_slider,
mask_thresh_slider, box_thresh_slider,
unclip_ratio_slider, det_score_mode_dropdown
],
outputs=[
output,
confidence,
img_output,
img_mask,
])
demo.launch(share=True)
|