Spaces:
Running
Running
File size: 27,911 Bytes
29f689c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
import copy
import datetime
import os
import random
import time
import numpy as np
import torch
from tqdm import tqdm
from openrec.losses import build_loss
from openrec.metrics import build_metric
from openrec.modeling import build_model
from openrec.optimizer import build_optimizer
from openrec.postprocess import build_post_process
from tools.data import build_dataloader
from tools.utils.ckpt import load_ckpt, save_ckpt
from tools.utils.logging import get_logger
from tools.utils.stats import TrainingStats
from tools.utils.utility import AverageMeter
__all__ = ['Trainer']
def get_parameter_number(model):
total_num = sum(p.numel() for p in model.parameters())
trainable_num = sum(p.numel() for p in model.parameters()
if p.requires_grad)
return {'Total': total_num, 'Trainable': trainable_num}
class Trainer(object):
def __init__(self, cfg, mode='train'):
self.cfg = cfg.cfg
self.local_rank = (int(os.environ['LOCAL_RANK'])
if 'LOCAL_RANK' in os.environ else 0)
self.set_device(self.cfg['Global']['device'])
mode = mode.lower()
assert mode in [
'train_eval',
'train',
'eval',
'test',
], 'mode should be train, eval and test'
if torch.cuda.device_count() > 1 and 'train' in mode:
torch.distributed.init_process_group(backend='nccl')
torch.cuda.set_device(self.device)
self.cfg['Global']['distributed'] = True
else:
self.cfg['Global']['distributed'] = False
self.local_rank = 0
self.cfg['Global']['output_dir'] = self.cfg['Global'].get(
'output_dir', 'output')
os.makedirs(self.cfg['Global']['output_dir'], exist_ok=True)
self.writer = None
if self.local_rank == 0 and self.cfg['Global'][
'use_tensorboard'] and 'train' in mode:
from torch.utils.tensorboard import SummaryWriter
self.writer = SummaryWriter(self.cfg['Global']['output_dir'])
self.logger = get_logger(
'openrec',
os.path.join(self.cfg['Global']['output_dir'], 'train.log')
if 'train' in mode else None,
)
cfg.print_cfg(self.logger.info)
if self.cfg['Global']['device'] == 'gpu' and self.device.type == 'cpu':
self.logger.info('cuda is not available, auto switch to cpu')
self.grad_clip_val = self.cfg['Global'].get('grad_clip_val', 0)
self.all_ema = self.cfg['Global'].get('all_ema', True)
self.use_ema = self.cfg['Global'].get('use_ema', True)
self.set_random_seed(self.cfg['Global'].get('seed', 48))
# build data loader
self.train_dataloader = None
if 'train' in mode:
cfg.save(
os.path.join(self.cfg['Global']['output_dir'], 'config.yml'),
self.cfg)
self.train_dataloader = build_dataloader(self.cfg, 'Train',
self.logger)
self.logger.info(
f'train dataloader has {len(self.train_dataloader)} iters')
self.valid_dataloader = None
if 'eval' in mode and self.cfg['Eval']:
self.valid_dataloader = build_dataloader(self.cfg, 'Eval',
self.logger)
self.logger.info(
f'valid dataloader has {len(self.valid_dataloader)} iters')
# build post process
self.post_process_class = build_post_process(self.cfg['PostProcess'],
self.cfg['Global'])
# build model
# for rec algorithm
char_num = self.post_process_class.get_character_num()
self.cfg['Architecture']['Decoder']['out_channels'] = char_num
self.model = build_model(self.cfg['Architecture'])
self.logger.info(get_parameter_number(model=self.model))
self.model = self.model.to(self.device)
if self.local_rank == 0:
ema_model = build_model(self.cfg['Architecture'])
self.ema_model = ema_model.to(self.device)
self.ema_model.eval()
use_sync_bn = self.cfg['Global'].get('use_sync_bn', False)
if use_sync_bn:
self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(
self.model)
self.logger.info('convert_sync_batchnorm')
# build loss
self.loss_class = build_loss(self.cfg['Loss'])
self.optimizer, self.lr_scheduler = None, None
if self.train_dataloader is not None:
# build optim
self.optimizer, self.lr_scheduler = build_optimizer(
self.cfg['Optimizer'],
self.cfg['LRScheduler'],
epochs=self.cfg['Global']['epoch_num'],
step_each_epoch=len(self.train_dataloader),
model=self.model,
)
self.eval_class = build_metric(self.cfg['Metric'])
self.status = load_ckpt(self.model, self.cfg, self.optimizer,
self.lr_scheduler)
if self.cfg['Global']['distributed']:
self.model = torch.nn.parallel.DistributedDataParallel(
self.model, [self.local_rank], find_unused_parameters=False)
# amp
self.scaler = (torch.cuda.amp.GradScaler() if self.cfg['Global'].get(
'use_amp', False) else None)
self.logger.info(
f'run with torch {torch.__version__} and device {self.device}')
def load_params(self, params):
self.model.load_state_dict(params)
def set_random_seed(self, seed):
torch.manual_seed(seed) # 为CPU设置随机种子
if self.device.type == 'cuda':
torch.backends.cudnn.benchmark = True
torch.cuda.manual_seed(seed) # 为当前GPU设置随机种子
torch.cuda.manual_seed_all(seed) # 为所有GPU设置随机种子
random.seed(seed)
np.random.seed(seed)
def set_device(self, device):
if device == 'gpu' and torch.cuda.is_available():
device = torch.device(f'cuda:{self.local_rank}')
else:
device = torch.device('cpu')
self.device = device
def train(self):
cal_metric_during_train = self.cfg['Global'].get(
'cal_metric_during_train', False)
log_smooth_window = self.cfg['Global']['log_smooth_window']
epoch_num = self.cfg['Global']['epoch_num']
print_batch_step = self.cfg['Global']['print_batch_step']
eval_epoch_step = self.cfg['Global'].get('eval_epoch_step', 1)
start_eval_epoch = 0
if self.valid_dataloader is not None:
if type(eval_epoch_step) == list and len(eval_epoch_step) >= 2:
start_eval_epoch = eval_epoch_step[0]
eval_epoch_step = eval_epoch_step[1]
if len(self.valid_dataloader) == 0:
start_eval_epoch = 1e111
self.logger.info(
'No Images in eval dataset, evaluation during training will be disabled'
)
self.logger.info(
f'During the training process, after the {start_eval_epoch}th epoch, '
f'an evaluation is run every {eval_epoch_step} epoch')
else:
start_eval_epoch = 1e111
eval_batch_step = self.cfg['Global']['eval_batch_step']
global_step = self.status.get('global_step', 0)
start_eval_step = 0
if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
start_eval_step = eval_batch_step[0]
eval_batch_step = eval_batch_step[1]
if len(self.valid_dataloader) == 0:
self.logger.info(
'No Images in eval dataset, evaluation during training '
'will be disabled')
start_eval_step = 1e111
self.logger.info(
'During the training process, after the {}th iteration, '
'an evaluation is run every {} iterations'.format(
start_eval_step, eval_batch_step))
start_epoch = self.status.get('epoch', 1)
best_metric = self.status.get('metrics', {})
if self.eval_class.main_indicator not in best_metric:
best_metric[self.eval_class.main_indicator] = 0
ema_best_metric = self.status.get('metrics', {})
ema_best_metric[self.eval_class.main_indicator] = 0
train_stats = TrainingStats(log_smooth_window, ['lr'])
self.model.train()
total_samples = 0
train_reader_cost = 0.0
train_batch_cost = 0.0
best_iter = 0
ema_stpe = 1
ema_eval_iter = 0
loss_avg = 0.
reader_start = time.time()
eta_meter = AverageMeter()
for epoch in range(start_epoch, epoch_num + 1):
if self.train_dataloader.dataset.need_reset:
self.train_dataloader = build_dataloader(
self.cfg,
'Train',
self.logger,
epoch=epoch % 20 if epoch % 20 != 0 else 20,
)
for idx, batch in enumerate(self.train_dataloader):
batch = [t.to(self.device) for t in batch]
self.optimizer.zero_grad()
train_reader_cost += time.time() - reader_start
# use amp
if self.scaler:
with torch.cuda.amp.autocast():
preds = self.model(batch[0], data=batch[1:])
loss = self.loss_class(preds, batch)
self.scaler.scale(loss['loss']).backward()
if self.grad_clip_val > 0:
torch.nn.utils.clip_grad_norm_(
self.model.parameters(),
max_norm=self.grad_clip_val)
self.scaler.step(self.optimizer)
self.scaler.update()
else:
preds = self.model(batch[0], data=batch[1:])
loss = self.loss_class(preds, batch)
avg_loss = loss['loss']
avg_loss.backward()
if self.grad_clip_val > 0:
torch.nn.utils.clip_grad_norm_(
self.model.parameters(),
max_norm=self.grad_clip_val)
self.optimizer.step()
if cal_metric_during_train: # only rec and cls need
post_result = self.post_process_class(preds,
batch,
training=True)
self.eval_class(post_result, batch, training=True)
metric = self.eval_class.get_metric()
train_stats.update(metric)
train_batch_time = time.time() - reader_start
train_batch_cost += train_batch_time
eta_meter.update(train_batch_time)
global_step += 1
total_samples += len(batch[0])
self.lr_scheduler.step()
if self.local_rank == 0 and self.use_ema and epoch > (
epoch_num - epoch_num // 10):
with torch.no_grad():
loss_currn = loss['loss'].detach().cpu().numpy().mean()
loss_avg = ((loss_avg *
(ema_stpe - 1)) + loss_currn) / (ema_stpe)
if ema_stpe == 1:
# current_weight = copy.deepcopy(self.model.module.state_dict())
ema_state_dict = copy.deepcopy(
self.model.module.state_dict() if self.
cfg['Global']['distributed'] else self.model.
state_dict())
self.ema_model.load_state_dict(ema_state_dict)
# if global_step > (epoch_num - epoch_num//10)*max_iter:
elif loss_currn <= loss_avg or self.all_ema:
# eval_batch_step = 500
current_weight = copy.deepcopy(
self.model.module.state_dict() if self.
cfg['Global']['distributed'] else self.model.
state_dict())
k1 = 1 / (ema_stpe + 1)
k2 = 1 - k1
for k, v in ema_state_dict.items():
# v = (v * (ema_stpe - 1) + current_weight[k])/ema_stpe
v = v * k2 + current_weight[k] * k1
# v.req = True
ema_state_dict[k] = v
# ema_stpe += 1
self.ema_model.load_state_dict(ema_state_dict)
ema_stpe += 1
if global_step > start_eval_step and (
global_step -
start_eval_step) % eval_batch_step == 0:
ema_cur_metric = self.eval_ema()
ema_cur_metric_str = f"cur ema metric, {', '.join(['{}: {}'.format(k, v) for k, v in ema_cur_metric.items()])}"
self.logger.info(ema_cur_metric_str)
state = {
'epoch': epoch,
'global_step': global_step,
'state_dict': self.ema_model.state_dict(),
'optimizer': None,
'scheduler': None,
'config': self.cfg,
'metrics': ema_cur_metric,
}
save_path = os.path.join(
self.cfg['Global']['output_dir'],
'ema_' + str(ema_eval_iter) + '.pth')
torch.save(state, save_path)
self.logger.info(f'save ema ckpt to {save_path}')
ema_eval_iter += 1
if ema_cur_metric[self.eval_class.
main_indicator] >= ema_best_metric[
self.eval_class.main_indicator]:
ema_best_metric.update(ema_cur_metric)
ema_best_metric['best_epoch'] = epoch
best_ema_str = f"best metric, {', '.join(['{}: {}'.format(k, v) for k, v in ema_best_metric.items()])}"
self.logger.info(best_ema_str)
# logger
stats = {
k: float(v)
if v.shape == [] else v.detach().cpu().numpy().mean()
for k, v in loss.items()
}
stats['lr'] = self.lr_scheduler.get_last_lr()[0]
train_stats.update(stats)
if self.writer is not None:
for k, v in train_stats.get().items():
self.writer.add_scalar(f'TRAIN/{k}', v, global_step)
if self.local_rank == 0 and (
(global_step > 0 and global_step % print_batch_step == 0)
or (idx >= len(self.train_dataloader) - 1)):
logs = train_stats.log()
eta_sec = (
(epoch_num + 1 - epoch) * len(self.train_dataloader) -
idx - 1) * eta_meter.avg
eta_sec_format = str(
datetime.timedelta(seconds=int(eta_sec)))
strs = (
f'epoch: [{epoch}/{epoch_num}], global_step: {global_step}, {logs}, '
f'avg_reader_cost: {train_reader_cost / print_batch_step:.5f} s, '
f'avg_batch_cost: {train_batch_cost / print_batch_step:.5f} s, '
f'avg_samples: {total_samples / print_batch_step}, '
f'ips: {total_samples / train_batch_cost:.5f} samples/s, '
f'eta: {eta_sec_format}')
self.logger.info(strs)
total_samples = 0
train_reader_cost = 0.0
train_batch_cost = 0.0
reader_start = time.time()
# eval
if (global_step > start_eval_step and
(global_step - start_eval_step) % eval_batch_step
== 0) and self.local_rank == 0:
cur_metric = self.eval()
cur_metric_str = f"cur metric, {', '.join(['{}: {}'.format(k, v) for k, v in cur_metric.items()])}"
self.logger.info(cur_metric_str)
# logger metric
if self.writer is not None:
for k, v in cur_metric.items():
if isinstance(v, (float, int)):
self.writer.add_scalar(f'EVAL/{k}',
cur_metric[k],
global_step)
if (cur_metric[self.eval_class.main_indicator] >=
best_metric[self.eval_class.main_indicator]):
best_metric.update(cur_metric)
best_metric['best_epoch'] = epoch
if self.writer is not None:
self.writer.add_scalar(
f'EVAL/best_{self.eval_class.main_indicator}',
best_metric[self.eval_class.main_indicator],
global_step,
)
if epoch > (epoch_num - epoch_num // 10 - 2):
save_ckpt(self.model,
self.cfg,
self.optimizer,
self.lr_scheduler,
epoch,
global_step,
best_metric,
is_best=True,
prefix='best_' + str(best_iter))
best_iter += 1
# else:
save_ckpt(self.model,
self.cfg,
self.optimizer,
self.lr_scheduler,
epoch,
global_step,
best_metric,
is_best=True,
prefix=None)
best_str = f"best metric, {', '.join(['{}: {}'.format(k, v) for k, v in best_metric.items()])}"
self.logger.info(best_str)
if self.local_rank == 0 and epoch > start_eval_epoch and (
epoch - start_eval_epoch) % eval_epoch_step == 0:
cur_metric = self.eval()
cur_metric_str = f"cur metric, {', '.join(['{}: {}'.format(k, v) for k, v in cur_metric.items()])}"
self.logger.info(cur_metric_str)
# logger metric
if self.writer is not None:
for k, v in cur_metric.items():
if isinstance(v, (float, int)):
self.writer.add_scalar(f'EVAL/{k}', cur_metric[k],
global_step)
if (cur_metric[self.eval_class.main_indicator] >=
best_metric[self.eval_class.main_indicator]):
best_metric.update(cur_metric)
best_metric['best_epoch'] = epoch
if self.writer is not None:
self.writer.add_scalar(
f'EVAL/best_{self.eval_class.main_indicator}',
best_metric[self.eval_class.main_indicator],
global_step,
)
if epoch > (epoch_num - epoch_num // 10 - 2):
save_ckpt(self.model,
self.cfg,
self.optimizer,
self.lr_scheduler,
epoch,
global_step,
best_metric,
is_best=True,
prefix='best_' + str(best_iter))
best_iter += 1
# else:
save_ckpt(self.model,
self.cfg,
self.optimizer,
self.lr_scheduler,
epoch,
global_step,
best_metric,
is_best=True,
prefix=None)
best_str = f"best metric, {', '.join(['{}: {}'.format(k, v) for k, v in best_metric.items()])}"
self.logger.info(best_str)
if self.local_rank == 0:
save_ckpt(self.model,
self.cfg,
self.optimizer,
self.lr_scheduler,
epoch,
global_step,
best_metric,
is_best=False,
prefix=None)
if epoch > (epoch_num - epoch_num // 10 - 2):
save_ckpt(self.model,
self.cfg,
self.optimizer,
self.lr_scheduler,
epoch,
global_step,
best_metric,
is_best=False,
prefix='epoch_' + str(epoch))
if self.use_ema and epoch > (epoch_num - epoch_num // 10):
# if global_step > start_eval_step and (global_step - start_eval_step) % eval_batch_step == 0:
ema_cur_metric = self.eval_ema()
ema_cur_metric_str = f"cur ema metric, {', '.join(['{}: {}'.format(k, v) for k, v in ema_cur_metric.items()])}"
self.logger.info(ema_cur_metric_str)
state = {
'epoch': epoch,
'global_step': global_step,
'state_dict': self.ema_model.state_dict(),
'optimizer': None,
'scheduler': None,
'config': self.cfg,
'metrics': ema_cur_metric,
}
save_path = os.path.join(
self.cfg['Global']['output_dir'],
'ema_' + str(ema_eval_iter) + '.pth')
torch.save(state, save_path)
self.logger.info(f'save ema ckpt to {save_path}')
ema_eval_iter += 1
if (ema_cur_metric[self.eval_class.main_indicator] >=
ema_best_metric[self.eval_class.main_indicator]):
ema_best_metric.update(ema_cur_metric)
ema_best_metric['best_epoch'] = epoch
# ema_cur_metric_str = f"best ema metric, {', '.join(['{}: {}'.format(k, v) for k, v in ema_best_metric.items()])}"
best_ema_str = f"best metric, {', '.join(['{}: {}'.format(k, v) for k, v in ema_best_metric.items()])}"
self.logger.info(best_ema_str)
best_str = f"best metric, {', '.join(['{}: {}'.format(k, v) for k, v in best_metric.items()])}"
self.logger.info(best_str)
if self.writer is not None:
self.writer.close()
if torch.cuda.device_count() > 1:
torch.distributed.destroy_process_group()
def eval(self):
self.model.eval()
with torch.no_grad():
total_frame = 0.0
total_time = 0.0
pbar = tqdm(
total=len(self.valid_dataloader),
desc='eval model:',
position=0,
leave=True,
)
sum_images = 0
for idx, batch in enumerate(self.valid_dataloader):
batch = [t.to(self.device) for t in batch]
start = time.time()
if self.scaler:
with torch.cuda.amp.autocast():
preds = self.model(batch[0], data=batch[1:])
else:
preds = self.model(batch[0], data=batch[1:])
total_time += time.time() - start
# Obtain usable results from post-processing methods
# Evaluate the results of the current batch
post_result = self.post_process_class(preds, batch)
self.eval_class(post_result, batch)
pbar.update(1)
total_frame += len(batch[0])
sum_images += 1
# Get final metric,eg. acc or hmean
metric = self.eval_class.get_metric()
pbar.close()
self.model.train()
metric['fps'] = total_frame / total_time
return metric
def eval_ema(self):
# self.model.eval()
with torch.no_grad():
total_frame = 0.0
total_time = 0.0
pbar = tqdm(
total=len(self.valid_dataloader),
desc='eval ema_model:',
position=0,
leave=True,
)
sum_images = 0
for idx, batch in enumerate(self.valid_dataloader):
batch = [t.to(self.device) for t in batch]
start = time.time()
if self.scaler:
with torch.cuda.amp.autocast():
preds = self.ema_model(batch[0], data=batch[1:])
else:
preds = self.ema_model(batch[0], data=batch[1:])
total_time += time.time() - start
# Obtain usable results from post-processing methods
# Evaluate the results of the current batch
post_result = self.post_process_class(preds, batch)
self.eval_class(post_result, batch)
pbar.update(1)
total_frame += len(batch[0])
sum_images += 1
# Get final metric,eg. acc or hmean
metric = self.eval_class.get_metric()
pbar.close()
# self.model.train()
metric['fps'] = total_frame / total_time
return metric
def test_dataloader(self):
starttime = time.time()
count = 0
try:
for data in self.train_dataloader:
count += 1
if count % 1 == 0:
batch_time = time.time() - starttime
starttime = time.time()
self.logger.info(
f'reader: {count}, {data[0].shape}, {batch_time}')
except:
import traceback
self.logger.info(traceback.format_exc())
self.logger.info(f'finish reader: {count}, Success!')
|