Spaces:
Running
Running
File size: 5,498 Bytes
29f689c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import io
import cv2
import numpy as np
from PIL import Image
from .abinet_label_encode import ABINetLabelEncode
from .ar_label_encode import ARLabelEncode
from .ce_label_encode import CELabelEncode
from .char_label_encode import CharLabelEncode
from .cppd_label_encode import CPPDLabelEncode
from .ctc_label_encode import CTCLabelEncode
from .ep_label_encode import EPLabelEncode
from .igtr_label_encode import IGTRLabelEncode
from .mgp_label_encode import MGPLabelEncode
from .rec_aug import ABINetAug
from .rec_aug import BaseDataAugmentation as BDA
from .rec_aug import PARSeqAug, PARSeqAugPIL, SVTRAug
from .resize import (ABINetResize, CDistNetResize, LongResize, RecTVResize,
RobustScannerRecResizeImg, SliceResize, SliceTVResize,
SRNRecResizeImg, SVTRResize, VisionLANResize,
RecDynamicResize)
from .smtr_label_encode import SMTRLabelEncode
from .srn_label_encode import SRNLabelEncode
from .visionlan_label_encode import VisionLANLabelEncode
from .cam_label_encode import CAMLabelEncode
class KeepKeys(object):
def __init__(self, keep_keys, **kwargs):
self.keep_keys = keep_keys
def __call__(self, data):
data_list = []
for key in self.keep_keys:
data_list.append(data[key])
return data_list
def transform(data, ops=None):
"""transform."""
if ops is None:
ops = []
for op in ops:
data = op(data)
if data is None:
return None
return data
class Fasttext(object):
def __init__(self, path='None', **kwargs):
# pip install fasttext==0.9.1
import fasttext
self.fast_model = fasttext.load_model(path)
def __call__(self, data):
label = data['label']
fast_label = self.fast_model[label]
data['fast_label'] = fast_label
return data
class DecodeImage(object):
"""decode image."""
def __init__(self,
img_mode='RGB',
channel_first=False,
ignore_orientation=False,
**kwargs):
self.img_mode = img_mode
self.channel_first = channel_first
self.ignore_orientation = ignore_orientation
def __call__(self, data):
img = data['image']
assert type(img) is bytes and len(
img) > 0, "invalid input 'img' in DecodeImage"
img = np.frombuffer(img, dtype='uint8')
if self.ignore_orientation:
img = cv2.imdecode(
img, cv2.IMREAD_IGNORE_ORIENTATION | cv2.IMREAD_COLOR)
else:
img = cv2.imdecode(img, 1)
if img is None:
return None
if self.img_mode == 'GRAY':
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
elif self.img_mode == 'RGB':
assert img.shape[2] == 3, 'invalid shape of image[%s]' % (
img.shape)
img = img[:, :, ::-1]
if self.channel_first:
img = img.transpose((2, 0, 1))
data['image'] = img
return data
class DecodeImagePIL(object):
"""decode image."""
def __init__(self, img_mode='RGB', **kwargs):
self.img_mode = img_mode
def __call__(self, data):
img = data['image']
assert type(img) is bytes and len(
img) > 0, "invalid input 'img' in DecodeImage"
img = data['image']
buf = io.BytesIO(img)
img = Image.open(buf).convert('RGB')
if self.img_mode == 'Gray':
img = img.convert('L')
elif self.img_mode == 'BGR':
img = np.array(img)[:, :, ::-1] # 将图片转为numpy格式,并将最后一维通道倒序
img = Image.fromarray(np.uint8(img))
data['image'] = img
return data
def create_operators(op_param_list, global_config=None):
"""create operators based on the config.
Args:
params(list): a dict list, used to create some operators
"""
assert isinstance(op_param_list, list), 'operator config should be a list'
ops = []
for operator in op_param_list:
assert isinstance(operator,
dict) and len(operator) == 1, 'yaml format error'
op_name = list(operator)[0]
param = {} if operator[op_name] is None else operator[op_name]
if global_config is not None:
param.update(global_config)
op = eval(op_name)(**param)
ops.append(op)
return ops
class GTCLabelEncode():
"""Convert between text-label and text-index."""
def __init__(self,
gtc_label_encode,
max_text_length,
character_dict_path=None,
use_space_char=False,
**kwargs):
self.gtc_label_encode = eval(gtc_label_encode['name'])(
max_text_length=max_text_length,
character_dict_path=character_dict_path,
use_space_char=use_space_char,
**gtc_label_encode)
self.ctc_label_encode = CTCLabelEncode(max_text_length,
character_dict_path,
use_space_char)
def __call__(self, data):
data_ctc = self.ctc_label_encode({'label': data['label']})
data = self.gtc_label_encode(data)
if data_ctc is None or data is None:
return None
data['ctc_label'] = data_ctc['label']
data['ctc_length'] = data_ctc['length']
return data
|