File size: 5,498 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import io

import cv2
import numpy as np
from PIL import Image

from .abinet_label_encode import ABINetLabelEncode
from .ar_label_encode import ARLabelEncode
from .ce_label_encode import CELabelEncode
from .char_label_encode import CharLabelEncode
from .cppd_label_encode import CPPDLabelEncode
from .ctc_label_encode import CTCLabelEncode
from .ep_label_encode import EPLabelEncode
from .igtr_label_encode import IGTRLabelEncode
from .mgp_label_encode import MGPLabelEncode
from .rec_aug import ABINetAug
from .rec_aug import BaseDataAugmentation as BDA
from .rec_aug import PARSeqAug, PARSeqAugPIL, SVTRAug
from .resize import (ABINetResize, CDistNetResize, LongResize, RecTVResize,
                     RobustScannerRecResizeImg, SliceResize, SliceTVResize,
                     SRNRecResizeImg, SVTRResize, VisionLANResize,
                     RecDynamicResize)
from .smtr_label_encode import SMTRLabelEncode
from .srn_label_encode import SRNLabelEncode
from .visionlan_label_encode import VisionLANLabelEncode
from .cam_label_encode import CAMLabelEncode


class KeepKeys(object):

    def __init__(self, keep_keys, **kwargs):
        self.keep_keys = keep_keys

    def __call__(self, data):
        data_list = []
        for key in self.keep_keys:
            data_list.append(data[key])
        return data_list


def transform(data, ops=None):
    """transform."""
    if ops is None:
        ops = []
    for op in ops:
        data = op(data)
        if data is None:
            return None
    return data


class Fasttext(object):

    def __init__(self, path='None', **kwargs):
        # pip install fasttext==0.9.1
        import fasttext

        self.fast_model = fasttext.load_model(path)

    def __call__(self, data):
        label = data['label']
        fast_label = self.fast_model[label]
        data['fast_label'] = fast_label
        return data


class DecodeImage(object):
    """decode image."""

    def __init__(self,
                 img_mode='RGB',
                 channel_first=False,
                 ignore_orientation=False,
                 **kwargs):
        self.img_mode = img_mode
        self.channel_first = channel_first
        self.ignore_orientation = ignore_orientation

    def __call__(self, data):
        img = data['image']

        assert type(img) is bytes and len(
            img) > 0, "invalid input 'img' in DecodeImage"
        img = np.frombuffer(img, dtype='uint8')
        if self.ignore_orientation:
            img = cv2.imdecode(
                img, cv2.IMREAD_IGNORE_ORIENTATION | cv2.IMREAD_COLOR)
        else:
            img = cv2.imdecode(img, 1)
        if img is None:
            return None
        if self.img_mode == 'GRAY':
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        elif self.img_mode == 'RGB':
            assert img.shape[2] == 3, 'invalid shape of image[%s]' % (
                img.shape)
            img = img[:, :, ::-1]

        if self.channel_first:
            img = img.transpose((2, 0, 1))

        data['image'] = img
        return data


class DecodeImagePIL(object):
    """decode image."""

    def __init__(self, img_mode='RGB', **kwargs):
        self.img_mode = img_mode

    def __call__(self, data):
        img = data['image']
        assert type(img) is bytes and len(
            img) > 0, "invalid input 'img' in DecodeImage"
        img = data['image']
        buf = io.BytesIO(img)
        img = Image.open(buf).convert('RGB')
        if self.img_mode == 'Gray':
            img = img.convert('L')
        elif self.img_mode == 'BGR':
            img = np.array(img)[:, :, ::-1]  # 将图片转为numpy格式,并将最后一维通道倒序
            img = Image.fromarray(np.uint8(img))
        data['image'] = img
        return data


def create_operators(op_param_list, global_config=None):
    """create operators based on the config.

    Args:
        params(list): a dict list, used to create some operators
    """
    assert isinstance(op_param_list, list), 'operator config should be a list'
    ops = []
    for operator in op_param_list:
        assert isinstance(operator,
                          dict) and len(operator) == 1, 'yaml format error'
        op_name = list(operator)[0]
        param = {} if operator[op_name] is None else operator[op_name]
        if global_config is not None:
            param.update(global_config)
        op = eval(op_name)(**param)
        ops.append(op)
    return ops


class GTCLabelEncode():
    """Convert between text-label and text-index."""

    def __init__(self,
                 gtc_label_encode,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
        self.gtc_label_encode = eval(gtc_label_encode['name'])(
            max_text_length=max_text_length,
            character_dict_path=character_dict_path,
            use_space_char=use_space_char,
            **gtc_label_encode)
        self.ctc_label_encode = CTCLabelEncode(max_text_length,
                                               character_dict_path,
                                               use_space_char)

    def __call__(self, data):
        data_ctc = self.ctc_label_encode({'label': data['label']})
        data = self.gtc_label_encode(data)
        if data_ctc is None or data is None:
            return None
        data['ctc_label'] = data_ctc['label']
        data['ctc_length'] = data_ctc['length']
        return data