Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -204,7 +204,7 @@ img_size = 224
|
|
204 |
|
205 |
@st.cache_resource
|
206 |
def loadModel():
|
207 |
-
model = load_model('
|
208 |
return model
|
209 |
|
210 |
model = loadModel()
|
@@ -231,7 +231,7 @@ class_names = [
|
|
231 |
|
232 |
def classifyImage(input_image):
|
233 |
input_image = input_image.resize((img_size, img_size))
|
234 |
-
input_array = tf.keras.utils.img_to_array(input_image)
|
235 |
|
236 |
# Add a batch dimension
|
237 |
input_array = tf.expand_dims(input_array, 0) # (1, 224, 224, 3)
|
@@ -239,20 +239,6 @@ def classifyImage(input_image):
|
|
239 |
predictions = model.predict(input_array)[0]
|
240 |
print(f"Predictions: {predictions}")
|
241 |
|
242 |
-
|
243 |
-
probability_sum = predictions.sum() * 100
|
244 |
-
print(f"Sum of predictions BEFORE SOFTMAX(as percentages): {probability_sum:.2f}%")
|
245 |
-
|
246 |
-
|
247 |
-
predictions = tf.nn.softmax(predictions).numpy() #testing
|
248 |
-
print(f"Predictions AFTER SOFTMAX: {predictions}")
|
249 |
-
|
250 |
-
probability_sum = predictions.sum() * 100
|
251 |
-
print(f"Sum of predictions AFTER SOFTMAX(as percentages): {probability_sum:.2f}%")
|
252 |
-
|
253 |
-
for i, confidence in enumerate(predictions):
|
254 |
-
print(f"Class {i} has {confidence*100:.2f}% confidence")
|
255 |
-
|
256 |
# Sort predictions to get top 5
|
257 |
top_indices = np.argsort(predictions)[-5:][::-1]
|
258 |
|
|
|
204 |
|
205 |
@st.cache_resource
|
206 |
def loadModel():
|
207 |
+
model = load_model('efficientnet-fine-d1.keras')
|
208 |
return model
|
209 |
|
210 |
model = loadModel()
|
|
|
231 |
|
232 |
def classifyImage(input_image):
|
233 |
input_image = input_image.resize((img_size, img_size))
|
234 |
+
input_array = tf.keras.utils.img_to_array(input_image)
|
235 |
|
236 |
# Add a batch dimension
|
237 |
input_array = tf.expand_dims(input_array, 0) # (1, 224, 224, 3)
|
|
|
239 |
predictions = model.predict(input_array)[0]
|
240 |
print(f"Predictions: {predictions}")
|
241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
# Sort predictions to get top 5
|
243 |
top_indices = np.argsort(predictions)[-5:][::-1]
|
244 |
|