Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -18,6 +18,8 @@ import matplotlib.pyplot as plt
|
|
18 |
from matplotlib.colors import LinearSegmentedColormap
|
19 |
import textwrap
|
20 |
import plotly.graph_objects as go
|
|
|
|
|
21 |
|
22 |
st.set_page_config(
|
23 |
page_title="Food Chain",
|
@@ -234,10 +236,11 @@ def classifyImage(input_image):
|
|
234 |
|
235 |
# Add a batch dimension
|
236 |
input_array = tf.expand_dims(input_array, 0) # (1, 224, 224, 3)
|
|
|
237 |
|
238 |
predictions = model.predict(input_array)[0]
|
239 |
print(f"Predictions: {predictions}")
|
240 |
-
predictions = tf.nn.softmax(predictions).numpy()
|
241 |
print(f"Predictions AFTER SOFTMAX: {predictions}")
|
242 |
|
243 |
# Sort predictions to get top 5
|
|
|
18 |
from matplotlib.colors import LinearSegmentedColormap
|
19 |
import textwrap
|
20 |
import plotly.graph_objects as go
|
21 |
+
from tensorflow.keras.applications.efficientnet import preprocess_input
|
22 |
+
|
23 |
|
24 |
st.set_page_config(
|
25 |
page_title="Food Chain",
|
|
|
236 |
|
237 |
# Add a batch dimension
|
238 |
input_array = tf.expand_dims(input_array, 0) # (1, 224, 224, 3)
|
239 |
+
input_array = preprocess_input(input_array) #TESTING
|
240 |
|
241 |
predictions = model.predict(input_array)[0]
|
242 |
print(f"Predictions: {predictions}")
|
243 |
+
predictions = tf.nn.softmax(predictions).numpy() #TESTING
|
244 |
print(f"Predictions AFTER SOFTMAX: {predictions}")
|
245 |
|
246 |
# Sort predictions to get top 5
|