tonyliu404 commited on
Commit
82ff04a
·
verified ·
1 Parent(s): 3e1bbe3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -1
app.py CHANGED
@@ -18,6 +18,8 @@ import matplotlib.pyplot as plt
18
  from matplotlib.colors import LinearSegmentedColormap
19
  import textwrap
20
  import plotly.graph_objects as go
 
 
21
 
22
  st.set_page_config(
23
  page_title="Food Chain",
@@ -234,10 +236,11 @@ def classifyImage(input_image):
234
 
235
  # Add a batch dimension
236
  input_array = tf.expand_dims(input_array, 0) # (1, 224, 224, 3)
 
237
 
238
  predictions = model.predict(input_array)[0]
239
  print(f"Predictions: {predictions}")
240
- predictions = tf.nn.softmax(predictions).numpy()
241
  print(f"Predictions AFTER SOFTMAX: {predictions}")
242
 
243
  # Sort predictions to get top 5
 
18
  from matplotlib.colors import LinearSegmentedColormap
19
  import textwrap
20
  import plotly.graph_objects as go
21
+ from tensorflow.keras.applications.efficientnet import preprocess_input
22
+
23
 
24
  st.set_page_config(
25
  page_title="Food Chain",
 
236
 
237
  # Add a batch dimension
238
  input_array = tf.expand_dims(input_array, 0) # (1, 224, 224, 3)
239
+ input_array = preprocess_input(input_array) #TESTING
240
 
241
  predictions = model.predict(input_array)[0]
242
  print(f"Predictions: {predictions}")
243
+ predictions = tf.nn.softmax(predictions).numpy() #TESTING
244
  print(f"Predictions AFTER SOFTMAX: {predictions}")
245
 
246
  # Sort predictions to get top 5