Group22_Project / app.py
tonyhui2234's picture
Update app.py
84af85b verified
raw
history blame
9.51 kB
import streamlit as st
import random
import pandas as pd
import requests
from io import BytesIO
from PIL import Image
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import re
# Define maximum dimensions for the fortune image (in pixels)
MAX_SIZE = (400, 400)
# Initialize button click count in session state
if "button_count_temp" not in st.session_state:
st.session_state.button_count_temp = 0
# Set page configuration
st.set_page_config(page_title="Fortuen Stick Enquiry", layout="wide")
st.title("Fortuen Stick Enquiry")
# Initialize session state variables
if "submitted_text" not in st.session_state:
st.session_state.submitted_text = False
if "fortune_number" not in st.session_state:
st.session_state.fortune_number = None
if "fortune_row" not in st.session_state:
st.session_state.fortune_row = None
if "error_message" not in st.session_state:
st.session_state.error_message = ""
if "cfu_explain_text" not in st.session_state:
st.session_state.cfu_explain_text = ""
if "fortune_data" not in st.session_state:
try:
st.session_state.fortune_data = pd.read_csv("/home/user/app/detail.csv")
except Exception as e:
st.error(f"Error loading CSV: {e}")
st.session_state.fortune_data = None
if "stick_clicked" not in st.session_state:
st.session_state.stick_clicked = False
def load_finetuned_classifier_model(question):
label_list = ["Geomancy", "Lost Property", "Personal Well-Being", "Future Prospect", "Traveling"]
# Create a mapping dictionary to convert the default "LABEL_x" output.
mapping = {f"LABEL_{i}": label for i, label in enumerate(label_list)}
pipe = pipeline("text-classification", model="tonyhui2234/CustomModel_classifier_model_10")
prediction = pipe(question)[0]['label']
predicted_label = mapping.get(prediction, prediction)
print(predicted_label)
return predicted_label
# Define your inference function
def generate_answer(question, fortune):
# Load the saved model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("/home/user/app/my_finetuned_model_2/")
model = AutoModelForSeq2SeqLM.from_pretrained("/home/user/app/my_finetuned_model_2/")
input_text = "Question: " + question + " Fortune: " + fortune
inputs = tokenizer(input_text, return_tensors="pt", truncation=True)
outputs = model.generate(**inputs, max_length=256, num_beams=4, early_stopping=True, repetition_penalty=2.0, no_repeat_ngram_size=3)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
def analysis(row_detail, classifiy, question):
# Use the classifier's output (e.g. "Personal Well-Being") in the regex.
pattern = re.compile(re.escape(classifiy) + r":\s*(.*?)(?:\.|$)", re.IGNORECASE)
match = pattern.search(row_detail)
if match:
result = match.group(1)
# If you want to generate a custom answer, you can call generate_answer()
return generate_answer(question, result)
# return result
else:
return "Heaven's secret cannot be revealed."
def check_sentence_is_english_model(question):
pipe_english = pipeline("text-classification", model="papluca/xlm-roberta-base-language-detection")
return pipe_english(question)[0]['label'] == 'en'
def check_sentence_is_question_model(question):
pipe_question = pipeline("text-classification", model="shahrukhx01/question-vs-statement-classifier")
return pipe_question(question)[0]['label'] == 'LABEL_1'
def submit_text_callback():
question = st.session_state.get("user_sentence", "")
# Clear any previous error message
st.session_state.error_message = ""
if not check_sentence_is_english_model(question):
st.session_state.error_message = "Please enter in English!"
st.session_state.button_count_temp = 0
return
if not check_sentence_is_question_model(question):
st.session_state.error_message = "This is not a question. Please enter again!"
st.session_state.button_count_temp = 0
return
if st.session_state.button_count_temp == 0:
st.session_state.error_message = "Please take a moment to quietly reflect on your question in your mind, then click submit."
st.session_state.button_count_temp = 1
return
st.session_state.submitted_text = True
st.session_state.button_count_temp = 0 # Reset the counter once submission is accepted
# Randomly generate a number from 1 to 100
st.session_state.fortune_number = random.randint(1, 100)
# Look up the row in the CSV where CNumber matches the generated fortune number.
df = st.session_state.fortune_data
row_detail = ''
if df is not None:
matching_row = df[df['CNumber'] == st.session_state.fortune_number]
if not matching_row.empty:
row = matching_row.iloc[0]
row_detail = row.get("Detail", "No detail available.")
st.session_state.fortune_row = {
"Header": row.get("Header", "N/A"),
"Luck": row.get("Luck", "N/A"),
"Description": row.get("Description", "No description available."),
"Detail": row_detail,
"HeaderLink": row.get("link", None)
}
else:
st.session_state.fortune_row = {
"Header": "N/A",
"Luck": "N/A",
"Description": "No description available.",
"Detail": "No detail available.",
"HeaderLink": None
}
print(row_detail)
classifiy = load_finetuned_classifier_model(question)
cfu_explain = analysis(row_detail, classifiy, question)
# Save the returned value in session state for later display
st.session_state.cfu_explain_text = cfu_explain
def load_and_resize_image(path, max_size=MAX_SIZE):
try:
img = Image.open(path)
img.thumbnail(max_size, Image.Resampling.LANCZOS)
return img
except Exception as e:
st.error(f"Error loading image: {e}")
return None
def download_and_resize_image(url, max_size=MAX_SIZE):
try:
response = requests.get(url)
response.raise_for_status()
image_bytes = BytesIO(response.content)
img = Image.open(image_bytes)
img.thumbnail(max_size, Image.Resampling.LANCZOS)
return img
except Exception as e:
st.error(f"Error loading image from URL: {e}")
return None
def stick_enquiry_callback():
st.session_state.stick_clicked = True
# Main layout: Left (input) and Right (fortune display)
left_col, _, right_col = st.columns([3, 1, 5])
# ---- Left Column ----
with left_col:
left_top = st.container()
left_bottom = st.container()
with left_top:
st.text_area("Enter your question in English", key="user_sentence", height=150)
st.button("submit", key="submit_button", on_click=submit_text_callback)
if st.session_state.error_message:
st.error(st.session_state.error_message)
if st.session_state.submitted_text:
with left_bottom:
for _ in range(5):
st.write("")
col1, col2, col3 = st.columns(3)
with col2:
st.button("Cfu Explain", key="stick_button", on_click=stick_enquiry_callback)
if st.session_state.stick_clicked:
# Display the explanation text saved from analysis()
st.text_area(' ', value=st.session_state.cfu_explain_text, height=300, disabled=True)
# ---- Right Column ----
with right_col:
with st.container():
col_left, col_center, col_right = st.columns([1, 2, 1])
with col_center:
if st.session_state.submitted_text and st.session_state.fortune_row:
header_link = st.session_state.fortune_row.get("HeaderLink")
if header_link:
img_from_url = download_and_resize_image(header_link)
if img_from_url:
st.image(img_from_url, use_container_width=False)
else:
img = load_and_resize_image("/home/user/app/error.png")
if img:
st.image(img, use_container_width=False)
else:
img = load_and_resize_image("/home/user/app/error.png")
if img:
st.image(img, use_container_width=False)
else:
img = load_and_resize_image("/home/user/app/fortune.png")
if img:
st.image(img, caption="Your Fortune", use_container_width=False)
with st.container():
if st.session_state.fortune_row:
luck_text = st.session_state.fortune_row.get("Luck", "N/A")
description_text = st.session_state.fortune_row.get("Description", "No description available.")
detail_text = st.session_state.fortune_row.get("Detail", "No detail available.")
summary = f"""
<div style="font-size: 28px; font-weight: bold;">
Fortune stick number: {st.session_state.fortune_number}<br>
Luck: {luck_text}
</div>
"""
st.markdown(summary, unsafe_allow_html=True)
st.text_area("Description", value=description_text, height=150, disabled=True)
st.text_area("Detail", value=detail_text, height=150, disabled=True)