DZsoul's picture
Upload 9 files
5a50d7c verified
raw
history blame
13.8 kB
import time
import streamlit as st
import yfinance as yf
from functools import wraps
import pandas as pd
import numpy as np
import random
from datetime import datetime, timedelta
try:
import pandas_datareader.data as web
PANDAS_DATAREADER_AVAILABLE = True
except ImportError:
PANDAS_DATAREADER_AVAILABLE = False
st.warning("pandas_datareader not available. Install it with: pip install pandas-datareader")
class RateLimitManager:
"""Manages rate limiting for API calls"""
def __init__(self, min_delay=3.0):
self.min_delay = min_delay
self.last_call_time = 0
def wait_if_needed(self):
"""Ensure minimum delay between API calls"""
current_time = time.time()
time_since_last_call = current_time - self.last_call_time
if time_since_last_call < self.min_delay:
sleep_time = self.min_delay - time_since_last_call + random.uniform(0.5, 1.5)
time.sleep(sleep_time)
self.last_call_time = time.time()
# Global rate limit manager
rate_limiter = RateLimitManager()
def create_sample_data(ticker, period='1mo'):
"""Create sample data when API is unavailable"""
# Define sample data for common tickers
sample_data = {
'NVDA': {'base_price': 450, 'volatility': 0.03, 'trend': 0.001},
'AAPL': {'base_price': 190, 'volatility': 0.02, 'trend': 0.0005},
'GOOGL': {'base_price': 140, 'volatility': 0.025, 'trend': 0.0008},
'MSFT': {'base_price': 420, 'volatility': 0.02, 'trend': 0.0007},
'AMZN': {'base_price': 150, 'volatility': 0.025, 'trend': 0.0006}
}
# Get parameters for ticker or use defaults
params = sample_data.get(ticker, {'base_price': 100, 'volatility': 0.02, 'trend': 0.0005})
# Generate date range based on period
if period == 'max' or period == '1y':
days = 252
elif period == '6mo':
days = 126
elif period == '1mo':
days = 30
else:
days = 30
# Create date range
end_date = datetime.now()
start_date = end_date - timedelta(days=days)
dates = pd.date_range(start=start_date, end=end_date, freq='D')
# Remove weekends
dates = dates[dates.weekday < 5]
# Generate price data
np.random.seed(42) # For consistent sample data
returns = np.random.normal(params['trend'], params['volatility'], len(dates))
prices = [params['base_price']]
for ret in returns[1:]:
prices.append(prices[-1] * (1 + ret))
# Create DataFrame
df = pd.DataFrame(index=dates[:len(prices)])
df['Close'] = prices
df['Open'] = df['Close'].shift(1).fillna(df['Close'])
df['High'] = df['Close'] * (1 + np.random.uniform(0, 0.02, len(df)))
df['Low'] = df['Close'] * (1 - np.random.uniform(0, 0.02, len(df)))
df['Volume'] = np.random.randint(1000000, 10000000, len(df))
return df
def retry_with_backoff(max_retries=5, base_delay=10):
"""Decorator for retrying functions with exponential backoff"""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
for attempt in range(max_retries):
try:
rate_limiter.wait_if_needed()
return func(*args, **kwargs)
except Exception as e:
error_msg = str(e).lower()
if any(keyword in error_msg for keyword in ['rate', 'limit', '429', 'too many requests']):
if attempt < max_retries - 1:
wait_time = base_delay * (2 ** attempt) + random.uniform(2, 5)
st.warning(f"🚫 Rate limit hit. Waiting {wait_time:.1f} seconds before retry {attempt + 2}/{max_retries}...")
time.sleep(wait_time)
continue
else:
st.error("⏱️ Rate limit exceeded after all retries. Using sample data.")
return None
elif any(keyword in error_msg for keyword in ['expecting value', 'no timezone', 'delisted', 'json']):
if attempt < max_retries - 1:
wait_time = base_delay + random.uniform(2, 4)
st.warning(f"🔄 Data parsing error. Retrying in {wait_time:.1f} seconds... (attempt {attempt + 2}/{max_retries})")
time.sleep(wait_time)
continue
else:
st.warning("⚠️ Unable to fetch real data. Using sample data for demonstration.")
return None
else:
if attempt < max_retries - 1:
wait_time = base_delay + random.uniform(1, 3)
st.warning(f"❗ Error: {str(e)[:100]}... Retrying in {wait_time:.1f} seconds...")
time.sleep(wait_time)
continue
else:
st.error(f"❌ Failed after {max_retries} attempts: {str(e)[:100]}...")
return None
return None
return wrapper
return decorator
def fetch_data_with_stooq(ticker_symbol, start_date=None, end_date=None, period='1mo'):
"""Fetch stock data using pandas_datareader with stooq as source"""
if not PANDAS_DATAREADER_AVAILABLE:
return None
try:
# Convert period to date range if start/end not provided
if start_date is None or end_date is None:
end_date = datetime.now()
if period == 'max' or period == '1y':
start_date = end_date - timedelta(days=365)
elif period == '6mo':
start_date = end_date - timedelta(days=180)
elif period == '1mo':
start_date = end_date - timedelta(days=30)
elif period == '5d':
start_date = end_date - timedelta(days=5)
else:
start_date = end_date - timedelta(days=30)
# Fetch data from stooq
df = web.DataReader(ticker_symbol, 'stooq', start_date, end_date)
if df.empty:
return None
# Stooq returns data in reverse chronological order, so sort it
df = df.sort_index()
# Ensure we have the required columns
required_columns = ['Open', 'High', 'Low', 'Close', 'Volume']
if all(col in df.columns for col in required_columns):
return df
else:
st.warning(f"Missing columns in stooq data: {[col for col in required_columns if col not in df.columns]}")
return None
except Exception as e:
st.error(f"Error fetching data from stooq: {str(e)}")
return None
def safe_yfinance_call(ticker_symbol, operation='history', **kwargs):
"""Safely call multiple data sources with fallback to sample data"""
# First try stooq (pandas_datareader) for historical data
if operation == 'history' and PANDAS_DATAREADER_AVAILABLE:
try:
st.sidebar.info(f"🔄 Trying stooq API for {ticker_symbol}...")
stooq_data = fetch_data_with_stooq(
ticker_symbol,
start_date=kwargs.get('start'),
end_date=kwargs.get('end'),
period=kwargs.get('period', '1mo')
)
if stooq_data is not None and not stooq_data.empty:
st.sidebar.success(f"✅ Real data from stooq for {ticker_symbol}")
return stooq_data
else:
st.sidebar.warning(f"⚠️ Stooq failed for {ticker_symbol}")
except Exception as e:
st.sidebar.warning(f"⚠️ Stooq error: {str(e)[:50]}...")
# If stooq fails or for info operation, try yfinance as backup
try:
st.sidebar.info(f"🔄 Trying yfinance API for {ticker_symbol}...")
ticker = yf.Ticker(ticker_symbol)
if operation == 'history':
result = ticker.history(
timeout=10,
prepost=False,
auto_adjust=True,
back_adjust=False,
repair=True,
keepna=False,
actions=False,
**kwargs
)
if result is not None and not result.empty and len(result) > 0:
st.sidebar.success(f"✅ Real data from yfinance for {ticker_symbol}")
return result
else:
st.sidebar.warning(f"⚠️ yfinance returned empty data for {ticker_symbol}")
elif operation == 'info':
result = ticker.info
if result and isinstance(result, dict) and len(result) > 1:
st.sidebar.success(f"✅ Info from yfinance for {ticker_symbol}")
return result
else:
st.sidebar.warning(f"⚠️ yfinance info empty for {ticker_symbol}")
else:
raise ValueError(f"Unsupported operation: {operation}")
except Exception as e:
st.sidebar.warning(f"⚠️ yfinance also failed: {str(e)[:50]}...")
# Finally fallback to sample data
if operation == 'history':
st.sidebar.warning(f"📊 Using sample data for {ticker_symbol}")
return create_sample_data(ticker_symbol, kwargs.get('period', '1mo'))
elif operation == 'info':
sample_prices = {
'NVDA': 450, 'AAPL': 190, 'GOOGL': 140, 'MSFT': 420, 'AMZN': 150
}
base_price = sample_prices.get(ticker_symbol, 100)
return {
'symbol': ticker_symbol,
'shortName': f'{ticker_symbol} Inc.',
'currentPrice': base_price + random.uniform(-2, 2),
'previousClose': base_price
}
else:
raise Exception(f"All data sources failed for {ticker_symbol}")
def get_cached_data(cache_key, ttl_seconds=300):
"""Get cached data from session state if still valid"""
if cache_key in st.session_state:
cache_time_key = f"cache_time_{cache_key}"
if cache_time_key in st.session_state:
cache_time = st.session_state[cache_time_key]
if time.time() - cache_time < ttl_seconds:
return st.session_state[cache_key]
return None
def set_cached_data(cache_key, data):
"""Cache data in session state with timestamp"""
st.session_state[cache_key] = data
st.session_state[f"cache_time_{cache_key}"] = time.time()
def clear_cache(pattern=None):
"""Clear cached data matching pattern"""
if pattern is None:
# Clear all cache
keys_to_remove = [key for key in st.session_state.keys()
if key.startswith('cache_time_') or key.startswith('data_')]
else:
keys_to_remove = [key for key in st.session_state.keys() if pattern in key]
for key in keys_to_remove:
del st.session_state[key]
return len(keys_to_remove)
def format_error_message(error):
"""Format error messages for better user experience"""
error_str = str(error).lower()
if "rate" in error_str or "limit" in error_str:
return ("🚫 **Rate Limit Exceeded**\n\n"
"Yahoo Finance has temporarily limited your requests. This happens when too many requests are made in a short time.\n\n"
"**What you can do:**\n"
"- Wait 5-10 minutes before trying again\n"
"- Use the cached data if available\n"
"- Try a different stock ticker\n\n"
"The app will automatically retry with delays between requests.")
elif "network" in error_str or "connection" in error_str:
return ("🌐 **Network Error**\n\n"
"There seems to be a connectivity issue.\n\n"
"**What you can do:**\n"
"- Check your internet connection\n"
"- Try refreshing the page\n"
"- Wait a moment and try again")
else:
return f"❌ **Error**: {str(error)}"
def display_cache_info():
"""Display cache information in sidebar"""
with st.sidebar:
with st.expander("Cache Information"):
cache_items = [key for key in st.session_state.keys()
if key.startswith('data_') or key.startswith('model_data_')]
if cache_items:
st.write(f"**Cached items:** {len(cache_items)}")
for item in cache_items[:5]: # Show first 5 items
cache_time_key = f"cache_time_{item}"
if cache_time_key in st.session_state:
cache_time = st.session_state[cache_time_key]
age_minutes = (time.time() - cache_time) / 60
st.write(f"• {item.replace('data_', '')}: {age_minutes:.1f}m ago")
if len(cache_items) > 5:
st.write(f"... and {len(cache_items) - 5} more")
if st.button("Clear All Cache"):
cleared = clear_cache()
st.success(f"Cleared {cleared} cached items")
st.experimental_rerun()
else:
st.write("No cached data")