Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,10 +5,10 @@ import random
|
|
5 |
import numpy as np
|
6 |
import time
|
7 |
|
8 |
-
|
9 |
-
#ds = load_dataset("tonyassi/lucy4-embeddings", split='train')
|
10 |
ds = load_dataset("tonyassi/finesse1-embeddings", split='train')
|
11 |
-
|
|
|
12 |
id_to_row = {row['id']: row for row in ds}
|
13 |
remaining_ds = None
|
14 |
preference_embedding = []
|
@@ -28,41 +28,13 @@ def get_random_images(dataset, num):
|
|
28 |
|
29 |
return random_images, new_dataset
|
30 |
|
31 |
-
"""
|
32 |
-
def find_similar_images(dataset, num, embedding):
|
33 |
-
start_time = time.time()
|
34 |
-
# Find the most similar images in dataset
|
35 |
-
dataset.add_faiss_index(column='embeddings')
|
36 |
-
embedding = np.array(embedding)
|
37 |
-
scores, retrieved_examples = dataset.get_nearest_examples('embeddings', embedding, k=num)
|
38 |
-
|
39 |
-
print('time 2.1:', time.time()-start_time)
|
40 |
-
|
41 |
-
# Create a new dataset without these images
|
42 |
-
dataset.drop_index('embeddings')
|
43 |
-
print('time 2.2:', time.time()-start_time)
|
44 |
-
remaining_indices = [i for i in range(len(dataset)) if dataset[i]['id'] not in retrieved_examples['id']]
|
45 |
-
print('time 2.3:', time.time()-start_time)
|
46 |
-
new_dataset = dataset.select(remaining_indices)
|
47 |
-
|
48 |
-
print('time 2.4:', time.time()-start_time)
|
49 |
-
return retrieved_examples, new_dataset
|
50 |
-
|
51 |
-
"""
|
52 |
-
|
53 |
def find_similar_images(dataset, num, embedding):
|
54 |
-
start_time = time.time()
|
55 |
-
|
56 |
# Ensure FAISS index exists and search for similar images
|
57 |
-
#if not dataset.has_faiss_index('embeddings'):
|
58 |
dataset.add_faiss_index(column='embeddings')
|
59 |
scores, retrieved_examples = dataset.get_nearest_examples('embeddings', np.array(embedding), k=num)
|
60 |
|
61 |
-
print('time 2.1:', time.time()-start_time)
|
62 |
-
|
63 |
# Drop FAISS index after use to avoid re-indexing
|
64 |
dataset.drop_index('embeddings')
|
65 |
-
print('time 2.2:', time.time()-start_time)
|
66 |
|
67 |
# Extract all dataset IDs and use a set to find remaining indices
|
68 |
dataset_ids = dataset['id']
|
@@ -70,17 +42,12 @@ def find_similar_images(dataset, num, embedding):
|
|
70 |
|
71 |
# Use a list comprehension with enumerate for faster indexing
|
72 |
remaining_indices = [i for i, id in enumerate(dataset_ids) if id not in retrieved_ids_set]
|
73 |
-
|
74 |
-
print('time 2.3:', time.time()-start_time)
|
75 |
|
76 |
# Create a new dataset without the retrieved images
|
77 |
new_dataset = dataset.select(remaining_indices)
|
78 |
|
79 |
-
print('time 2.4:', time.time()-start_time)
|
80 |
return retrieved_examples, new_dataset
|
81 |
|
82 |
-
|
83 |
-
|
84 |
def average_embedding(embedding1, embedding2):
|
85 |
embedding1 = np.array(embedding1)
|
86 |
embedding2 = np.array(embedding2)
|
@@ -89,7 +56,6 @@ def average_embedding(embedding1, embedding2):
|
|
89 |
###################################################################################
|
90 |
|
91 |
def load_images():
|
92 |
-
print('load_images()')
|
93 |
print("ds", ds.num_rows)
|
94 |
|
95 |
global remaining_ds
|
@@ -108,23 +74,15 @@ def load_images():
|
|
108 |
|
109 |
|
110 |
def select_image(evt: gr.SelectData, gallery, preference_gallery):
|
111 |
-
start_time = time.time()
|
112 |
-
|
113 |
-
print('select_image()')
|
114 |
-
|
115 |
global remaining_ds
|
116 |
print("remaining_ds", remaining_ds.num_rows)
|
117 |
|
118 |
# Selected image
|
119 |
selected_id = int(evt.value['caption'])
|
120 |
-
print('ID', selected_id)
|
121 |
-
#selected_row = ds.filter(lambda row: row['id'] == selected_id)[0]
|
122 |
selected_row = id_to_row[selected_id]
|
123 |
selected_embedding = selected_row['embeddings']
|
124 |
selected_image = selected_row['image']
|
125 |
|
126 |
-
print('time 1:', time.time()-start_time)
|
127 |
-
|
128 |
# Update preference embedding
|
129 |
global preference_embedding
|
130 |
if len(preference_embedding) == 0:
|
@@ -132,18 +90,12 @@ def select_image(evt: gr.SelectData, gallery, preference_gallery):
|
|
132 |
else:
|
133 |
preference_embedding = average_embedding(preference_embedding, selected_embedding)
|
134 |
|
135 |
-
print('time 2:', time.time()-start_time)
|
136 |
-
|
137 |
# Find images which are most similar to the preference embedding
|
138 |
simlar_images, remaining_ds = find_similar_images(remaining_ds, 5, preference_embedding)
|
139 |
|
140 |
-
print('time 3:', time.time()-start_time)
|
141 |
-
|
142 |
# Create a list of tuples [(img1,caption1),(img2,caption2)...]
|
143 |
result = list(zip(simlar_images['image'], [str(id) for id in simlar_images['id']]))
|
144 |
|
145 |
-
print('time 4:', time.time()-start_time)
|
146 |
-
|
147 |
# Get random images
|
148 |
rand_imgs, remaining_ds = get_random_images(remaining_ds, 5)
|
149 |
# Create a list of tuples [(img1,caption1),(img2,caption2)...]
|
@@ -157,8 +109,6 @@ def select_image(evt: gr.SelectData, gallery, preference_gallery):
|
|
157 |
else:
|
158 |
final_preference_gallery = [selected_image] + preference_gallery
|
159 |
|
160 |
-
print('time 5:', time.time()-start_time)
|
161 |
-
|
162 |
return gr.Gallery(value=final_result, selected_index=None), final_preference_gallery
|
163 |
|
164 |
###################################################################################
|
|
|
5 |
import numpy as np
|
6 |
import time
|
7 |
|
8 |
+
# Dataset
|
|
|
9 |
ds = load_dataset("tonyassi/finesse1-embeddings", split='train')
|
10 |
+
|
11 |
+
|
12 |
id_to_row = {row['id']: row for row in ds}
|
13 |
remaining_ds = None
|
14 |
preference_embedding = []
|
|
|
28 |
|
29 |
return random_images, new_dataset
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def find_similar_images(dataset, num, embedding):
|
|
|
|
|
32 |
# Ensure FAISS index exists and search for similar images
|
|
|
33 |
dataset.add_faiss_index(column='embeddings')
|
34 |
scores, retrieved_examples = dataset.get_nearest_examples('embeddings', np.array(embedding), k=num)
|
35 |
|
|
|
|
|
36 |
# Drop FAISS index after use to avoid re-indexing
|
37 |
dataset.drop_index('embeddings')
|
|
|
38 |
|
39 |
# Extract all dataset IDs and use a set to find remaining indices
|
40 |
dataset_ids = dataset['id']
|
|
|
42 |
|
43 |
# Use a list comprehension with enumerate for faster indexing
|
44 |
remaining_indices = [i for i, id in enumerate(dataset_ids) if id not in retrieved_ids_set]
|
|
|
|
|
45 |
|
46 |
# Create a new dataset without the retrieved images
|
47 |
new_dataset = dataset.select(remaining_indices)
|
48 |
|
|
|
49 |
return retrieved_examples, new_dataset
|
50 |
|
|
|
|
|
51 |
def average_embedding(embedding1, embedding2):
|
52 |
embedding1 = np.array(embedding1)
|
53 |
embedding2 = np.array(embedding2)
|
|
|
56 |
###################################################################################
|
57 |
|
58 |
def load_images():
|
|
|
59 |
print("ds", ds.num_rows)
|
60 |
|
61 |
global remaining_ds
|
|
|
74 |
|
75 |
|
76 |
def select_image(evt: gr.SelectData, gallery, preference_gallery):
|
|
|
|
|
|
|
|
|
77 |
global remaining_ds
|
78 |
print("remaining_ds", remaining_ds.num_rows)
|
79 |
|
80 |
# Selected image
|
81 |
selected_id = int(evt.value['caption'])
|
|
|
|
|
82 |
selected_row = id_to_row[selected_id]
|
83 |
selected_embedding = selected_row['embeddings']
|
84 |
selected_image = selected_row['image']
|
85 |
|
|
|
|
|
86 |
# Update preference embedding
|
87 |
global preference_embedding
|
88 |
if len(preference_embedding) == 0:
|
|
|
90 |
else:
|
91 |
preference_embedding = average_embedding(preference_embedding, selected_embedding)
|
92 |
|
|
|
|
|
93 |
# Find images which are most similar to the preference embedding
|
94 |
simlar_images, remaining_ds = find_similar_images(remaining_ds, 5, preference_embedding)
|
95 |
|
|
|
|
|
96 |
# Create a list of tuples [(img1,caption1),(img2,caption2)...]
|
97 |
result = list(zip(simlar_images['image'], [str(id) for id in simlar_images['id']]))
|
98 |
|
|
|
|
|
99 |
# Get random images
|
100 |
rand_imgs, remaining_ds = get_random_images(remaining_ds, 5)
|
101 |
# Create a list of tuples [(img1,caption1),(img2,caption2)...]
|
|
|
109 |
else:
|
110 |
final_preference_gallery = [selected_image] + preference_gallery
|
111 |
|
|
|
|
|
112 |
return gr.Gallery(value=final_result, selected_index=None), final_preference_gallery
|
113 |
|
114 |
###################################################################################
|