Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
from datasets import load_dataset, Dataset
|
4 |
+
import random
|
5 |
+
import numpy as np
|
6 |
+
import time
|
7 |
+
|
8 |
+
|
9 |
+
#ds = load_dataset("tonyassi/lucy4-embeddings", split='train')
|
10 |
+
ds = load_dataset("tonyassi/finesse1-embeddings", split='train')
|
11 |
+
#ds = load_dataset("tonyassi/lucy5-embeddings", split='train')
|
12 |
+
id_to_row = {row['id']: row for row in ds}
|
13 |
+
remaining_ds = None
|
14 |
+
preference_embedding = []
|
15 |
+
|
16 |
+
###################################################################################
|
17 |
+
|
18 |
+
def get_random_images(dataset, num):
|
19 |
+
# Select 4 random indices from the dataset
|
20 |
+
random_indices = random.sample(range(len(dataset)), num)
|
21 |
+
|
22 |
+
# Get the 4 random images
|
23 |
+
random_images = dataset.select(random_indices)
|
24 |
+
|
25 |
+
# Create a new dataset with the remaining images
|
26 |
+
remaining_indices = [i for i in range(len(dataset)) if i not in random_indices]
|
27 |
+
new_dataset = dataset.select(remaining_indices)
|
28 |
+
|
29 |
+
return random_images, new_dataset
|
30 |
+
|
31 |
+
"""
|
32 |
+
def find_similar_images(dataset, num, embedding):
|
33 |
+
start_time = time.time()
|
34 |
+
# Find the most similar images in dataset
|
35 |
+
dataset.add_faiss_index(column='embeddings')
|
36 |
+
embedding = np.array(embedding)
|
37 |
+
scores, retrieved_examples = dataset.get_nearest_examples('embeddings', embedding, k=num)
|
38 |
+
|
39 |
+
print('time 2.1:', time.time()-start_time)
|
40 |
+
|
41 |
+
# Create a new dataset without these images
|
42 |
+
dataset.drop_index('embeddings')
|
43 |
+
print('time 2.2:', time.time()-start_time)
|
44 |
+
remaining_indices = [i for i in range(len(dataset)) if dataset[i]['id'] not in retrieved_examples['id']]
|
45 |
+
print('time 2.3:', time.time()-start_time)
|
46 |
+
new_dataset = dataset.select(remaining_indices)
|
47 |
+
|
48 |
+
print('time 2.4:', time.time()-start_time)
|
49 |
+
return retrieved_examples, new_dataset
|
50 |
+
|
51 |
+
"""
|
52 |
+
|
53 |
+
def find_similar_images(dataset, num, embedding):
|
54 |
+
start_time = time.time()
|
55 |
+
|
56 |
+
# Ensure FAISS index exists and search for similar images
|
57 |
+
#if not dataset.has_faiss_index('embeddings'):
|
58 |
+
dataset.add_faiss_index(column='embeddings')
|
59 |
+
scores, retrieved_examples = dataset.get_nearest_examples('embeddings', np.array(embedding), k=num)
|
60 |
+
|
61 |
+
print('time 2.1:', time.time()-start_time)
|
62 |
+
|
63 |
+
# Drop FAISS index after use to avoid re-indexing
|
64 |
+
dataset.drop_index('embeddings')
|
65 |
+
print('time 2.2:', time.time()-start_time)
|
66 |
+
|
67 |
+
# Extract all dataset IDs and use a set to find remaining indices
|
68 |
+
dataset_ids = dataset['id']
|
69 |
+
retrieved_ids_set = set(retrieved_examples['id'])
|
70 |
+
|
71 |
+
# Use a list comprehension with enumerate for faster indexing
|
72 |
+
remaining_indices = [i for i, id in enumerate(dataset_ids) if id not in retrieved_ids_set]
|
73 |
+
|
74 |
+
print('time 2.3:', time.time()-start_time)
|
75 |
+
|
76 |
+
# Create a new dataset without the retrieved images
|
77 |
+
new_dataset = dataset.select(remaining_indices)
|
78 |
+
|
79 |
+
print('time 2.4:', time.time()-start_time)
|
80 |
+
return retrieved_examples, new_dataset
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
def average_embedding(embedding1, embedding2):
|
85 |
+
embedding1 = np.array(embedding1)
|
86 |
+
embedding2 = np.array(embedding2)
|
87 |
+
return (embedding1 + embedding2) / 2
|
88 |
+
|
89 |
+
###################################################################################
|
90 |
+
|
91 |
+
def load_images():
|
92 |
+
print('load_images()')
|
93 |
+
print("ds", ds.num_rows)
|
94 |
+
|
95 |
+
global remaining_ds
|
96 |
+
remaining_ds = ds
|
97 |
+
|
98 |
+
global preference_embedding
|
99 |
+
preference_embedding = []
|
100 |
+
|
101 |
+
# Get random images
|
102 |
+
rand_imgs, remaining_ds = get_random_images(ds, 10)
|
103 |
+
|
104 |
+
# Create a list of tuples [(img1,caption1),(img2,caption2)...]
|
105 |
+
result = list(zip(rand_imgs['image'], [str(id) for id in rand_imgs['id']]))
|
106 |
+
|
107 |
+
return result
|
108 |
+
|
109 |
+
|
110 |
+
def select_image(evt: gr.SelectData, gallery, preference_gallery):
|
111 |
+
start_time = time.time()
|
112 |
+
|
113 |
+
print('select_image()')
|
114 |
+
|
115 |
+
global remaining_ds
|
116 |
+
print("remaining_ds", remaining_ds.num_rows)
|
117 |
+
|
118 |
+
# Selected image
|
119 |
+
selected_id = int(evt.value['caption'])
|
120 |
+
print('ID', selected_id)
|
121 |
+
#selected_row = ds.filter(lambda row: row['id'] == selected_id)[0]
|
122 |
+
selected_row = id_to_row[selected_id]
|
123 |
+
selected_embedding = selected_row['embeddings']
|
124 |
+
selected_image = selected_row['image']
|
125 |
+
|
126 |
+
print('time 1:', time.time()-start_time)
|
127 |
+
|
128 |
+
# Update preference embedding
|
129 |
+
global preference_embedding
|
130 |
+
if len(preference_embedding) == 0:
|
131 |
+
preference_embedding = selected_embedding
|
132 |
+
else:
|
133 |
+
preference_embedding = average_embedding(preference_embedding, selected_embedding)
|
134 |
+
|
135 |
+
print('time 2:', time.time()-start_time)
|
136 |
+
|
137 |
+
# Find images which are most similar to the preference embedding
|
138 |
+
simlar_images, remaining_ds = find_similar_images(remaining_ds, 5, preference_embedding)
|
139 |
+
|
140 |
+
print('time 3:', time.time()-start_time)
|
141 |
+
|
142 |
+
# Create a list of tuples [(img1,caption1),(img2,caption2)...]
|
143 |
+
result = list(zip(simlar_images['image'], [str(id) for id in simlar_images['id']]))
|
144 |
+
|
145 |
+
print('time 4:', time.time()-start_time)
|
146 |
+
|
147 |
+
# Get random images
|
148 |
+
rand_imgs, remaining_ds = get_random_images(remaining_ds, 5)
|
149 |
+
# Create a list of tuples [(img1,caption1),(img2,caption2)...]
|
150 |
+
random_result = list(zip(rand_imgs['image'], [str(id) for id in rand_imgs['id']]))
|
151 |
+
|
152 |
+
final_result = result + random_result
|
153 |
+
|
154 |
+
# Update prefernce gallery
|
155 |
+
if (preference_gallery==None):
|
156 |
+
final_preference_gallery = [selected_image]
|
157 |
+
else:
|
158 |
+
final_preference_gallery = [selected_image] + preference_gallery
|
159 |
+
|
160 |
+
print('time 5:', time.time()-start_time)
|
161 |
+
|
162 |
+
return gr.Gallery(value=final_result, selected_index=None), final_preference_gallery
|
163 |
+
|
164 |
+
###################################################################################
|
165 |
+
|
166 |
+
with gr.Blocks() as demo:
|
167 |
+
gr.Markdown("""
|
168 |
+
<center><h1> Product Recommendation using Image Similarity </h1></center>
|
169 |
+
|
170 |
+
<center>by <a href="https://www.tonyassi.com/" target="_blank">Tony Assi</a></center>
|
171 |
+
|
172 |
+
|
173 |
+
<center> This is a demo of product recommendation using image similarity of user preferences. </center>
|
174 |
+
|
175 |
+
The the user selects their favorite product which then gets added to the user preference group. Each of the image embeddings in the user preference products get averaged into a preference embedding. Each round some products are displayed: 5 products most similar to user preference embedding and 5 random products. Embeddings are generated with [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224). The dataset used is [tonyassi/finesse1-embeddings](https://huggingface.co/datasets/tonyassi/finesse1-embeddings).
|
176 |
+
""")
|
177 |
+
|
178 |
+
product_gallery = gr.Gallery(columns=5, object_fit='contain', allow_preview=False, label='Products')
|
179 |
+
preference_gallery = gr.Gallery(columns=5, object_fit='contain', allow_preview=False, label='Preference', interactive=False)
|
180 |
+
|
181 |
+
demo.load(load_images, inputs=None, outputs=[product_gallery])
|
182 |
+
product_gallery.select(select_image, inputs=[product_gallery, preference_gallery], outputs=[product_gallery, preference_gallery])
|
183 |
+
|
184 |
+
|
185 |
+
demo.launch()
|