Spaces:
Running
Running
File size: 1,436 Bytes
442e23b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import cv2
from PIL import Image
import numpy as np
from rembg import remove
def cv_to_pil(img):
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGRA2RGBA))
def pil_to_cv(img):
return cv2.cvtColor(np.array(img), cv2.COLOR_RGBA2BGRA)
def motion_blur(img, distance, amount):
# Convert to RGBA
img = img.convert('RGBA')
# Convert pil to cv
cv_img = pil_to_cv(img)
# Generating the kernel
kernel_motion_blur = np.zeros((distance, distance))
kernel_motion_blur[int((distance-1)/2), :] = np.ones(distance)
kernel_motion_blur = kernel_motion_blur / distance
# Applying the kernel to the input image
output = cv2.filter2D(cv_img, -1, kernel_motion_blur)
# Convert cv to pil
blur_img = cv_to_pil(output).convert('RGBA')
# Blend the original image and the blur image
final_img = Image.blend(img, blur_img, amount)
return final_img
def background_motion_blur(background, distance_blur, amount_blur, amount_subject):
# Remove background
subject = remove(background)
# Blur the background
background_blur = motion_blur(background, distance_blur, amount_blur)
# Put the subject on top of the blur background
subject_on_blur_background = Image.alpha_composite(background_blur, subject)
# Blend the subject and the blur background
result = Image.blend(background_blur, subject_on_blur_background, amount_subject)
return result |