Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,83 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
from diffusers import AutoPipelineForInpainting, AutoencoderKL
|
3 |
+
import gradio as gr
|
4 |
+
from diffusers.utils import load_image
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
from SegBody import segment_body
|
8 |
+
from SegCloth import segment_clothing
|
9 |
|
10 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
11 |
+
pipeline = AutoPipelineForInpainting.from_pretrained(os.environ.get('MODEL'), vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda")
|
12 |
+
pipeline.load_ip_adapter(os.environ.get('IP_ADAPTER'), subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
|
13 |
+
|
14 |
+
@spaces.GPU(enable_queue=True)
|
15 |
+
def squarify_image(img):
|
16 |
+
if(img.height > img.width): bg_size = img.height
|
17 |
+
else: bg_size = img.width
|
18 |
+
bg = Image.new(mode="RGB", size=(bg_size,bg_size), color="white")
|
19 |
+
bg.paste(img, ( int((bg.width - bg.width)/2), 0) )
|
20 |
+
|
21 |
+
return bg
|
22 |
+
|
23 |
+
@spaces.GPU(enable_queue=True)
|
24 |
+
def divisible_by_8(image):
|
25 |
+
width, height = image.size
|
26 |
+
|
27 |
+
# Calculate the new width and height that are divisible by 8
|
28 |
+
new_width = (width // 8) * 8
|
29 |
+
new_height = (height // 8) * 8
|
30 |
+
|
31 |
+
# Resize the image
|
32 |
+
resized_image = image.resize((new_width, new_height))
|
33 |
+
|
34 |
+
return resized_image
|
35 |
+
|
36 |
+
@spaces.GPU(enable_queue=True)
|
37 |
+
def generate(person, clothing):
|
38 |
+
person.thumbnail((1024,1024))
|
39 |
+
person = divisible_by_8(person)
|
40 |
+
|
41 |
+
clothing.thumbnail((1024,1024))
|
42 |
+
clothing = divisible_by_8(clothing)
|
43 |
+
|
44 |
+
image = squarify_image(person)
|
45 |
+
|
46 |
+
seg_image, mask_image = segment_body(image, face=False)
|
47 |
+
|
48 |
+
seg_cloth = segment_clothing(clothing, clothes= ["Upper-clothes", "Skirt", "Pants", "Dress", "Belt"])
|
49 |
+
#seg_cloth = clothing
|
50 |
+
|
51 |
+
pipeline.to("cuda")
|
52 |
+
pipeline.set_ip_adapter_scale(1.0)
|
53 |
+
images = pipeline(
|
54 |
+
prompt="photorealistic, perfect body, beautiful skin, realistic skin, natural skin",
|
55 |
+
negative_prompt="ugly, bad quality, bad anatomy, deformed body, deformed hands, deformed feet, deformed face, deformed clothing, deformed skin, bad skin, leggings, tights, stockings",
|
56 |
+
image=image,
|
57 |
+
mask_image=mask_image,
|
58 |
+
ip_adapter_image=seg_cloth,
|
59 |
+
width=image.width,
|
60 |
+
height=image.height,
|
61 |
+
strength=0.99,
|
62 |
+
guidance_scale=7.5,
|
63 |
+
num_inference_steps=100,
|
64 |
+
).images
|
65 |
+
|
66 |
+
final = images[0].crop((0, 0, person.width, person.height))
|
67 |
+
|
68 |
+
return final
|
69 |
+
|
70 |
+
iface = gr.Interface(fn=generate,
|
71 |
+
inputs=[gr.Image(label='Person', type='pil'), gr.Image(label='Clothing', type='pil')],
|
72 |
+
outputs=[gr.Image(label='Result')],
|
73 |
+
title='Fashion Try-On',
|
74 |
+
description="""
|
75 |
+
by [Tony Assi](https://www.tonyassi.com/)
|
76 |
+
|
77 |
+
Check out [Virtual Try-On Pro](https://huggingface.co/spaces/tonyassi/Virtual-Try-On-Pro) !
|
78 |
+
|
79 |
+
Please ❤️ this Space. I build custom AI apps for companies. <a href="mailto: [email protected]">Email me</a> for business inquiries.
|
80 |
+
""",
|
81 |
+
theme = gr.themes.Base(primary_hue="teal",secondary_hue="teal",neutral_hue="slate"),
|
82 |
+
examples=[["images/person1.jpg", "images/clothing1.jpg"], ["images/person1.jpg", "images/clothing2.jpg"]],)
|
83 |
+
iface.launch()
|