tonyassi commited on
Commit
5a5f2a3
·
verified ·
1 Parent(s): 3f4ec37

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +82 -2
app.py CHANGED
@@ -1,3 +1,83 @@
1
- import os
 
 
 
 
 
 
 
2
 
3
- exec(os.environ.get('APP'))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ from diffusers import AutoPipelineForInpainting, AutoencoderKL
3
+ import gradio as gr
4
+ from diffusers.utils import load_image
5
+ import torch
6
+ from PIL import Image
7
+ from SegBody import segment_body
8
+ from SegCloth import segment_clothing
9
 
10
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
11
+ pipeline = AutoPipelineForInpainting.from_pretrained(os.environ.get('MODEL'), vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda")
12
+ pipeline.load_ip_adapter(os.environ.get('IP_ADAPTER'), subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
13
+
14
+ @spaces.GPU(enable_queue=True)
15
+ def squarify_image(img):
16
+ if(img.height > img.width): bg_size = img.height
17
+ else: bg_size = img.width
18
+ bg = Image.new(mode="RGB", size=(bg_size,bg_size), color="white")
19
+ bg.paste(img, ( int((bg.width - bg.width)/2), 0) )
20
+
21
+ return bg
22
+
23
+ @spaces.GPU(enable_queue=True)
24
+ def divisible_by_8(image):
25
+ width, height = image.size
26
+
27
+ # Calculate the new width and height that are divisible by 8
28
+ new_width = (width // 8) * 8
29
+ new_height = (height // 8) * 8
30
+
31
+ # Resize the image
32
+ resized_image = image.resize((new_width, new_height))
33
+
34
+ return resized_image
35
+
36
+ @spaces.GPU(enable_queue=True)
37
+ def generate(person, clothing):
38
+ person.thumbnail((1024,1024))
39
+ person = divisible_by_8(person)
40
+
41
+ clothing.thumbnail((1024,1024))
42
+ clothing = divisible_by_8(clothing)
43
+
44
+ image = squarify_image(person)
45
+
46
+ seg_image, mask_image = segment_body(image, face=False)
47
+
48
+ seg_cloth = segment_clothing(clothing, clothes= ["Upper-clothes", "Skirt", "Pants", "Dress", "Belt"])
49
+ #seg_cloth = clothing
50
+
51
+ pipeline.to("cuda")
52
+ pipeline.set_ip_adapter_scale(1.0)
53
+ images = pipeline(
54
+ prompt="photorealistic, perfect body, beautiful skin, realistic skin, natural skin",
55
+ negative_prompt="ugly, bad quality, bad anatomy, deformed body, deformed hands, deformed feet, deformed face, deformed clothing, deformed skin, bad skin, leggings, tights, stockings",
56
+ image=image,
57
+ mask_image=mask_image,
58
+ ip_adapter_image=seg_cloth,
59
+ width=image.width,
60
+ height=image.height,
61
+ strength=0.99,
62
+ guidance_scale=7.5,
63
+ num_inference_steps=100,
64
+ ).images
65
+
66
+ final = images[0].crop((0, 0, person.width, person.height))
67
+
68
+ return final
69
+
70
+ iface = gr.Interface(fn=generate,
71
+ inputs=[gr.Image(label='Person', type='pil'), gr.Image(label='Clothing', type='pil')],
72
+ outputs=[gr.Image(label='Result')],
73
+ title='Fashion Try-On',
74
+ description="""
75
+ by [Tony Assi](https://www.tonyassi.com/)
76
+
77
+ Check out [Virtual Try-On Pro](https://huggingface.co/spaces/tonyassi/Virtual-Try-On-Pro) !
78
+
79
+ Please ❤️ this Space. I build custom AI apps for companies. <a href="mailto: [email protected]">Email me</a> for business inquiries.
80
+ """,
81
+ theme = gr.themes.Base(primary_hue="teal",secondary_hue="teal",neutral_hue="slate"),
82
+ examples=[["images/person1.jpg", "images/clothing1.jpg"], ["images/person1.jpg", "images/clothing2.jpg"]],)
83
+ iface.launch()