Spaces:
Sleeping
Sleeping
Commit
·
fbfbbd7
1
Parent(s):
300ee92
Add main application files
Browse files- app.py +116 -0
- pdf_processor.py +42 -0
- rag_engine.py +112 -0
- streamlit_app.py +43 -0
app.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tempfile
|
3 |
+
import os
|
4 |
+
from pdf_processor import PDFProcessor
|
5 |
+
from rag_engine import RAGEngine
|
6 |
+
|
7 |
+
# Initialize session state
|
8 |
+
if 'rag_engine' not in st.session_state:
|
9 |
+
try:
|
10 |
+
st.session_state.rag_engine = RAGEngine()
|
11 |
+
except ValueError as e:
|
12 |
+
st.error(f"Configuration Error: {str(e)}")
|
13 |
+
st.stop()
|
14 |
+
except ConnectionError as e:
|
15 |
+
st.error(f"Connection Error: {str(e)}")
|
16 |
+
st.stop()
|
17 |
+
except Exception as e:
|
18 |
+
st.error(f"Unexpected Error: {str(e)}")
|
19 |
+
st.stop()
|
20 |
+
|
21 |
+
if 'processed_file' not in st.session_state:
|
22 |
+
st.session_state.processed_file = False
|
23 |
+
|
24 |
+
# Page config
|
25 |
+
st.set_page_config(page_title="Concept Definition Chatbot", layout="wide")
|
26 |
+
st.title("Concept Definition Chatbot")
|
27 |
+
|
28 |
+
# Sidebar for PDF upload
|
29 |
+
with st.sidebar:
|
30 |
+
st.header("Upload PDF")
|
31 |
+
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
|
32 |
+
|
33 |
+
if uploaded_file is not None and not st.session_state.processed_file:
|
34 |
+
with st.spinner("Processing PDF..."):
|
35 |
+
try:
|
36 |
+
# Save uploaded file temporarily
|
37 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
|
38 |
+
tmp_file.write(uploaded_file.getvalue())
|
39 |
+
tmp_path = tmp_file.name
|
40 |
+
|
41 |
+
# Process PDF
|
42 |
+
processor = PDFProcessor()
|
43 |
+
chunks = processor.process_pdf(tmp_path)
|
44 |
+
|
45 |
+
# Initialize RAG engine
|
46 |
+
st.session_state.rag_engine.initialize_vector_store(chunks)
|
47 |
+
st.session_state.processed_file = True
|
48 |
+
|
49 |
+
# Clean up
|
50 |
+
os.unlink(tmp_path)
|
51 |
+
except ValueError as e:
|
52 |
+
st.error(f"Configuration Error: {str(e)}")
|
53 |
+
st.stop()
|
54 |
+
except ConnectionError as e:
|
55 |
+
st.error(f"Connection Error: {str(e)}")
|
56 |
+
st.stop()
|
57 |
+
except Exception as e:
|
58 |
+
st.error(f"Unexpected Error: {str(e)}")
|
59 |
+
st.stop()
|
60 |
+
st.success("PDF processed successfully!")
|
61 |
+
|
62 |
+
# Main chat interface
|
63 |
+
if st.session_state.processed_file:
|
64 |
+
# Initialize chat history
|
65 |
+
if "messages" not in st.session_state:
|
66 |
+
st.session_state.messages = []
|
67 |
+
|
68 |
+
# Display chat messages
|
69 |
+
for message in st.session_state.messages:
|
70 |
+
with st.chat_message(message["role"]):
|
71 |
+
st.markdown(message["content"])
|
72 |
+
if "sources" in message:
|
73 |
+
with st.expander("View Sources"):
|
74 |
+
for source in message["sources"]:
|
75 |
+
st.markdown(f"**Page {source['page']}:**\n{source['text']}")
|
76 |
+
|
77 |
+
# Chat input
|
78 |
+
if prompt := st.chat_input("Ask a question about the concepts in your PDF"):
|
79 |
+
# Add user message to chat history
|
80 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
81 |
+
|
82 |
+
# Display user message
|
83 |
+
with st.chat_message("user"):
|
84 |
+
st.markdown(prompt)
|
85 |
+
|
86 |
+
# Get bot response
|
87 |
+
with st.chat_message("assistant"):
|
88 |
+
with st.spinner("Thinking..."):
|
89 |
+
try:
|
90 |
+
response = st.session_state.rag_engine.answer_question(prompt)
|
91 |
+
|
92 |
+
# Display response
|
93 |
+
st.markdown(response["answer"])
|
94 |
+
|
95 |
+
# Display sources in expander
|
96 |
+
with st.expander("View Sources"):
|
97 |
+
for source in response["sources"]:
|
98 |
+
st.markdown(f"**Page {source['page']}:**\n{source['text']}")
|
99 |
+
|
100 |
+
# Add assistant response to chat history
|
101 |
+
st.session_state.messages.append({
|
102 |
+
"role": "assistant",
|
103 |
+
"content": response["answer"],
|
104 |
+
"sources": response["sources"]
|
105 |
+
})
|
106 |
+
except ValueError as e:
|
107 |
+
st.error(f"Configuration Error: {str(e)}")
|
108 |
+
st.stop()
|
109 |
+
except ConnectionError as e:
|
110 |
+
st.error(f"Connection Error: {str(e)}")
|
111 |
+
st.stop()
|
112 |
+
except Exception as e:
|
113 |
+
st.error(f"Unexpected Error: {str(e)}")
|
114 |
+
st.stop()
|
115 |
+
else:
|
116 |
+
st.info("Please upload a PDF file to start chatting.")
|
pdf_processor.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Dict
|
2 |
+
from langchain.document_loaders import PyPDFLoader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
|
5 |
+
class PDFProcessor:
|
6 |
+
def __init__(self):
|
7 |
+
self.text_splitter = RecursiveCharacterTextSplitter(
|
8 |
+
chunk_size=1000,
|
9 |
+
chunk_overlap=200,
|
10 |
+
length_function=len,
|
11 |
+
separators=["\n\n", "\n", " ", ""]
|
12 |
+
)
|
13 |
+
|
14 |
+
def process_pdf(self, pdf_path: str) -> List[Dict]:
|
15 |
+
"""
|
16 |
+
Process a PDF file and return chunks of text with metadata.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
pdf_path (str): Path to the PDF file
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
List[Dict]: List of dictionaries containing text chunks and metadata
|
23 |
+
"""
|
24 |
+
# Load PDF
|
25 |
+
loader = PyPDFLoader(pdf_path)
|
26 |
+
pages = loader.load()
|
27 |
+
|
28 |
+
# Split text into chunks
|
29 |
+
chunks = self.text_splitter.split_documents(pages)
|
30 |
+
|
31 |
+
# Format chunks with metadata
|
32 |
+
processed_chunks = []
|
33 |
+
for chunk in chunks:
|
34 |
+
processed_chunks.append({
|
35 |
+
'text': chunk.page_content,
|
36 |
+
'metadata': {
|
37 |
+
'page': chunk.metadata.get('page', 0) + 1,
|
38 |
+
'source': pdf_path
|
39 |
+
}
|
40 |
+
})
|
41 |
+
|
42 |
+
return processed_chunks
|
rag_engine.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List, Dict
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
import chromadb
|
5 |
+
from langchain.embeddings import AzureOpenAIEmbeddings
|
6 |
+
from langchain.vectorstores import Chroma
|
7 |
+
from langchain.chat_models import AzureChatOpenAI
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
import time
|
10 |
+
|
11 |
+
# Load environment variables
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
class RAGEngine:
|
15 |
+
def __init__(self):
|
16 |
+
# Verify Azure OpenAI settings are set
|
17 |
+
required_vars = [
|
18 |
+
'AZURE_OPENAI_ENDPOINT',
|
19 |
+
'AZURE_OPENAI_KEY',
|
20 |
+
'AZURE_OPENAI_DEPLOYMENT_NAME',
|
21 |
+
'AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME'
|
22 |
+
]
|
23 |
+
|
24 |
+
missing_vars = [var for var in required_vars if not os.getenv(var)]
|
25 |
+
if missing_vars:
|
26 |
+
raise ValueError(f"Missing required Azure OpenAI settings: {', '.join(missing_vars)}")
|
27 |
+
|
28 |
+
# Initialize with retry mechanism
|
29 |
+
max_retries = 3
|
30 |
+
for attempt in range(max_retries):
|
31 |
+
try:
|
32 |
+
self.embeddings = AzureOpenAIEmbeddings(
|
33 |
+
azure_endpoint=os.getenv('AZURE_OPENAI_ENDPOINT'),
|
34 |
+
azure_deployment=os.getenv('AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME'),
|
35 |
+
api_key=os.getenv('AZURE_OPENAI_KEY')
|
36 |
+
)
|
37 |
+
self.vector_store = None
|
38 |
+
self.qa_chain = None
|
39 |
+
# Test connection
|
40 |
+
self.embeddings.embed_query("test")
|
41 |
+
break
|
42 |
+
except Exception as e:
|
43 |
+
if attempt == max_retries - 1:
|
44 |
+
raise ConnectionError(f"Failed to connect to Azure OpenAI API after {max_retries} attempts. Error: {str(e)}")
|
45 |
+
time.sleep(2) # Wait before retrying
|
46 |
+
|
47 |
+
def initialize_vector_store(self, chunks: List[Dict]):
|
48 |
+
"""
|
49 |
+
Initialize the vector store with document chunks.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
chunks (List[Dict]): List of dictionaries containing text and metadata
|
53 |
+
"""
|
54 |
+
texts = [chunk['text'] for chunk in chunks]
|
55 |
+
metadatas = [chunk['metadata'] for chunk in chunks]
|
56 |
+
|
57 |
+
# Create vector store
|
58 |
+
self.vector_store = Chroma.from_texts(
|
59 |
+
texts=texts,
|
60 |
+
embedding=self.embeddings,
|
61 |
+
metadatas=metadatas
|
62 |
+
)
|
63 |
+
|
64 |
+
# Initialize QA chain
|
65 |
+
llm = AzureChatOpenAI(temperature=0, model_name="gpt-3.5-turbo", azure_deployment_name=os.getenv('AZURE_OPENAI_DEPLOYMENT_NAME'), azure_endpoint=os.getenv('AZURE_OPENAI_ENDPOINT'), api_key=os.getenv('AZURE_OPENAI_KEY'))
|
66 |
+
self.qa_chain = RetrievalQA.from_chain_type(
|
67 |
+
llm=llm,
|
68 |
+
chain_type="stuff",
|
69 |
+
retriever=self.vector_store.as_retriever(
|
70 |
+
search_kwargs={"k": 3}
|
71 |
+
)
|
72 |
+
)
|
73 |
+
|
74 |
+
def answer_question(self, question: str) -> Dict:
|
75 |
+
"""
|
76 |
+
Answer a question using the RAG system.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
question (str): User's question
|
80 |
+
|
81 |
+
Returns:
|
82 |
+
Dict: Answer and source information
|
83 |
+
"""
|
84 |
+
if not self.qa_chain:
|
85 |
+
raise ValueError("Vector store not initialized. Please process documents first.")
|
86 |
+
|
87 |
+
# Create a prompt that emphasizes definition extraction
|
88 |
+
prompt = f"""
|
89 |
+
Question: {question}
|
90 |
+
Please provide a clear and concise answer based on the provided context.
|
91 |
+
If the question asks for a definition or explanation of a concept,
|
92 |
+
make sure to provide that specifically. Include relevant examples or
|
93 |
+
additional context only if they help clarify the concept.
|
94 |
+
"""
|
95 |
+
|
96 |
+
# Get answer from QA chain
|
97 |
+
result = self.qa_chain({"query": prompt})
|
98 |
+
|
99 |
+
# Get source documents
|
100 |
+
source_docs = self.vector_store.similarity_search(question, k=2)
|
101 |
+
sources = [
|
102 |
+
{
|
103 |
+
'page': doc.metadata['page'],
|
104 |
+
'text': doc.page_content[:200] + "..." # Preview of source text
|
105 |
+
}
|
106 |
+
for doc in source_docs
|
107 |
+
]
|
108 |
+
|
109 |
+
return {
|
110 |
+
'answer': result['result'],
|
111 |
+
'sources': sources
|
112 |
+
}
|
streamlit_app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from pdf_processor import PDFProcessor
|
5 |
+
from rag_engine import RAGEngine
|
6 |
+
from app.config import AZURE_OPENAI_DEPLOYMENT_NAME
|
7 |
+
|
8 |
+
# Load environment variables
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
# Initialize components
|
12 |
+
pdf_processor = PDFProcessor()
|
13 |
+
rag_engine = RAGEngine(deployment_name=AZURE_OPENAI_DEPLOYMENT_NAME)
|
14 |
+
|
15 |
+
def main():
|
16 |
+
st.set_page_config(
|
17 |
+
page_title="CRE Knowledge Assistant",
|
18 |
+
page_icon="🤖",
|
19 |
+
layout="wide"
|
20 |
+
)
|
21 |
+
|
22 |
+
st.title("CRE Knowledge Assistant 🏢")
|
23 |
+
|
24 |
+
# File uploader
|
25 |
+
uploaded_file = st.file_uploader("Upload a PDF document", type="pdf")
|
26 |
+
|
27 |
+
if uploaded_file:
|
28 |
+
try:
|
29 |
+
# Process the PDF
|
30 |
+
pdf_processor.process(uploaded_file)
|
31 |
+
st.success("PDF processed successfully! You can now ask questions about it.")
|
32 |
+
|
33 |
+
# Show chat interface
|
34 |
+
user_question = st.text_input("Ask a question about the document:")
|
35 |
+
if user_question:
|
36 |
+
response = rag_engine.get_response(user_question)
|
37 |
+
st.write("Answer:", response)
|
38 |
+
|
39 |
+
except Exception as e:
|
40 |
+
st.error(f"Error processing PDF: {str(e)}")
|
41 |
+
|
42 |
+
if __name__ == "__main__":
|
43 |
+
main()
|