# 1. Import the required libraries import torch import gradio as gr from typing import Dict from transformers import pipeline # 2. Define our function to use with our model spanish_sentence_classification_by_school_subject_pipeline = pipeline(task="text-classification", model="tonicanada/learn_hf_spanish_sentence_classification_by_school_subject", top_k=1, device="cuda" if torch.cuda.is_available() else "cpu", batch_size=32) def classify_text(text): # Usa el clasificador result = spanish_sentence_classification_by_school_subject_pipeline(text) # Extrae la etiqueta y la puntuación (score) label = result[0][0]['label'] score = result[0][0]['score'] return {label: score} # Devuelve un diccionario con la etiqueta y la puntuación # 3. Create a Gradio interface description = """ Un clasificador de texto que indica a qué asignatura se refiere la frase. Fine-tuned desde [DistilBERT](https://huggingface.co/distilbert/distilbert/distilbert-base-multilingual-cased) con un [pequeño dataset de frases acerca asignaturas escolares](https://huggingface.co/datasets/tonicanada/learn_hf_spanish_sentence_classification_by_school_subject). """ demo = gr.Interface( fn = classify_text, inputs = "text", outputs=gr.Label(num_top_classes=10), title="📚🔍 Clasificador de asignaturas", description=description, examples=[["Matemáticas: 5 al cuadrado es 25"], ["Geografía: París es la capital de Francia"]]) # 4. Launch the interface if __name__ == "__main__": demo.launch()