Last commit not found
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
""" | |
Model head modules | |
""" | |
import math | |
import torch | |
import torch.nn as nn | |
from torch.nn.init import constant_, xavier_uniform_ | |
from ultralytics.utils.tal import TORCH_1_10, dist2bbox, make_anchors | |
from .block import DFL, Proto | |
from .conv import Conv | |
from .transformer import MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer | |
from .utils import bias_init_with_prob, linear_init_ | |
__all__ = 'Detect', 'Segment','ExtendedSegment' ,'Pose', 'Classify', 'RTDETRDecoder' | |
class Detect(nn.Module): | |
"""YOLOv8 Detect head for detection models.""" | |
dynamic = False # force grid reconstruction | |
export = False # export mode | |
shape = None | |
anchors = torch.empty(0) # init | |
strides = torch.empty(0) # init | |
def __init__(self, nc=80, ch=()): # detection layer | |
super().__init__() | |
self.nc = nc # number of classes | |
self.nl = len(ch) # number of detection layers | |
self.reg_max = 16 # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x) | |
self.no = nc + self.reg_max * 4 # number of outputs per anchor | |
self.stride = torch.zeros(self.nl) # strides computed during build | |
c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100)) # channels | |
self.cv2 = nn.ModuleList( | |
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch) | |
self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch) | |
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity() | |
def forward(self, x): | |
"""Concatenates and returns predicted bounding boxes and class probabilities.""" | |
shape = x[0].shape # BCHW | |
for i in range(self.nl): | |
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1) | |
if self.training: | |
return x | |
elif self.dynamic or self.shape != shape: | |
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5)) | |
self.shape = shape | |
x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2) | |
if self.export and self.format in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'): # avoid TF FlexSplitV ops | |
box = x_cat[:, :self.reg_max * 4] | |
cls = x_cat[:, self.reg_max * 4:] | |
else: | |
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1) | |
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides | |
if self.export and self.format in ('tflite', 'edgetpu'): | |
# Normalize xywh with image size to mitigate quantization error of TFLite integer models as done in YOLOv5: | |
# https://github.com/ultralytics/yolov5/blob/0c8de3fca4a702f8ff5c435e67f378d1fce70243/models/tf.py#L307-L309 | |
# See this PR for details: https://github.com/ultralytics/ultralytics/pull/1695 | |
img_h = shape[2] * self.stride[0] | |
img_w = shape[3] * self.stride[0] | |
img_size = torch.tensor([img_w, img_h, img_w, img_h], device=dbox.device).reshape(1, 4, 1) | |
dbox /= img_size | |
y = torch.cat((dbox, cls.sigmoid()), 1) | |
return y if self.export else (y, x) | |
def bias_init(self): | |
"""Initialize Detect() biases, WARNING: requires stride availability.""" | |
m = self # self.model[-1] # Detect() module | |
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1 | |
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency | |
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from | |
a[-1].bias.data[:] = 1.0 # box | |
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img) | |
class Segment(Detect): | |
"""YOLOv8 Segment head for segmentation models.""" | |
def __init__(self, nc=80, nm=32, npr=256, ch=()): | |
"""Initialize the YOLO model attributes such as the number of masks, prototypes, and the convolution layers.""" | |
super().__init__(nc, ch) | |
self.nm = nm # number of masks | |
self.npr = npr # number of protos | |
self.proto = Proto(ch[0], self.npr, self.nm) # protos | |
self.detect = Detect.forward | |
c4 = max(ch[0] // 4, self.nm) | |
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch) | |
def forward(self, x): | |
"""Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients.""" | |
p = self.proto(x[0]) # mask protos | |
bs = p.shape[0] # batch size | |
mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients | |
x = self.detect(self, x) | |
if self.training: | |
return x, mc, p | |
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p)) | |
class ExtendedSegment(Segment): | |
"""Extends the Segment class to add a regression head predicting a 6D vector.""" | |
def __init__(self, nc=80, nm=32, npr=256, ch=()): | |
super().__init__(nc, nm, npr, ch) | |
self.regression_head = nn.ModuleList(nn.Sequential( | |
Conv(x, max(x // 4, 128), 3), | |
nn.Conv2d(max(x // 4, 128), 5, 1), | |
nn.Sigmoid() | |
) for x in ch) # Produces a 6D vector for each anchor and applies sigmoid activation | |
def forward(self, x): | |
regression_outputs = [self.regression_head[i](x[i]).view(x[i].shape[0], 5, -1) for i in range(self.nl)] | |
regression_tensor = torch.cat(regression_outputs, 2) | |
outputs = super().forward(x) | |
# Call the parent's forward method to get original outputs and masks | |
if self.training: | |
x, mc, p = outputs | |
return x, mc, p, regression_tensor | |
else: | |
if self.export: | |
out_1, out_2 = outputs | |
return (out_1, out_2, regression_tensor) | |
else: | |
out_1, out_2 = outputs | |
return ((out_1,regression_tensor), (out_2[0],out_2[1],out_2[2], regression_tensor)) | |
# class BasicBlock(nn.Module): | |
# def __init__(self, in_channels, dropout_prob=0.0): | |
# super(BasicBlock, self).__init__() | |
# self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1) | |
# self.bn1 = nn.BatchNorm2d(in_channels) | |
# self.relu = nn.ReLU(inplace=True) | |
# self.dropout1 = nn.Dropout2d(p=dropout_prob) # First Dropout2D | |
# self.conv2 = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1) | |
# self.bn2 = nn.BatchNorm2d(in_channels) | |
# self.dropout2 = nn.Dropout2d(p= dropout_prob) # Second Dropout2D | |
# def forward(self, x): | |
# identity = x | |
# out = self.conv1(x) | |
# out = self.bn1(out) | |
# out = self.relu(out) | |
# out = self.dropout1(out) # Applying first Dropout here | |
# out = self.conv2(out) | |
# out = self.bn2(out) | |
# out = self.dropout2(out) # Applying second Dropout here | |
# out += identity | |
# out = self.relu(out) | |
# return out | |
# class ExtendedSegment(Segment): | |
# def __init__(self, nc=80, nm=32, npr=256, ch=(), dropout_prob=0.25): | |
# super().__init__(nc, nm, npr, ch) | |
# self.regression_head = nn.ModuleList( | |
# nn.Sequential( | |
# Conv(x, max(x // 4, 128), 3), # Assuming Conv is defined elsewhere | |
# BasicBlock(max(x // 4, 128), dropout_prob=dropout_prob), | |
# nn.Conv2d(max(x // 4, 128), 6, 1), | |
# nn.Sigmoid() | |
# ) for x in ch | |
# ) | |
# def forward(self, x): | |
# regression_outputs = [self.regression_head[i](x[i]).view(x[i].shape[0], 6, -1) for i in range(self.nl)] | |
# regression_tensor = torch.cat(regression_outputs, 2) | |
# outputs = super().forward(x) | |
# if self.training: | |
# x, mc, p = outputs | |
# return x, mc, p, regression_tensor | |
# else: | |
# if self.export: | |
# out_1, out_2 = outputs | |
# return (out_1, out_2, regression_tensor) | |
# else: | |
# out_1, out_2 = outputs | |
# return ((out_1, regression_tensor), (out_2[0], out_2[1], out_2[2], regression_tensor)) | |
class Pose(Detect): | |
"""YOLOv8 Pose head for keypoints models.""" | |
def __init__(self, nc=80, kpt_shape=(17, 3), ch=()): | |
"""Initialize YOLO network with default parameters and Convolutional Layers.""" | |
super().__init__(nc, ch) | |
self.kpt_shape = kpt_shape # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible) | |
self.nk = kpt_shape[0] * kpt_shape[1] # number of keypoints total | |
self.detect = Detect.forward | |
c4 = max(ch[0] // 4, self.nk) | |
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nk, 1)) for x in ch) | |
def forward(self, x): | |
"""Perform forward pass through YOLO model and return predictions.""" | |
bs = x[0].shape[0] # batch size | |
kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1) # (bs, 17*3, h*w) | |
x = self.detect(self, x) | |
if self.training: | |
return x, kpt | |
pred_kpt = self.kpts_decode(bs, kpt) | |
return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt)) | |
def kpts_decode(self, bs, kpts): | |
"""Decodes keypoints.""" | |
ndim = self.kpt_shape[1] | |
if self.export: # required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug | |
y = kpts.view(bs, *self.kpt_shape, -1) | |
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides | |
if ndim == 3: | |
a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2) | |
return a.view(bs, self.nk, -1) | |
else: | |
y = kpts.clone() | |
if ndim == 3: | |
y[:, 2::3].sigmoid_() # inplace sigmoid | |
y[:, 0::ndim] = (y[:, 0::ndim] * 2.0 + (self.anchors[0] - 0.5)) * self.strides | |
y[:, 1::ndim] = (y[:, 1::ndim] * 2.0 + (self.anchors[1] - 0.5)) * self.strides | |
return y | |
class Classify(nn.Module): | |
"""YOLOv8 classification head, i.e. x(b,c1,20,20) to x(b,c2).""" | |
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups | |
super().__init__() | |
c_ = 1280 # efficientnet_b0 size | |
self.conv = Conv(c1, c_, k, s, p, g) | |
self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1) | |
self.drop = nn.Dropout(p=0.0, inplace=True) | |
self.linear = nn.Linear(c_, c2) # to x(b,c2) | |
def forward(self, x): | |
"""Performs a forward pass of the YOLO model on input image data.""" | |
if isinstance(x, list): | |
x = torch.cat(x, 1) | |
x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1))) | |
return x if self.training else x.softmax(1) | |
class RTDETRDecoder(nn.Module): | |
export = False # export mode | |
def __init__( | |
self, | |
nc=80, | |
ch=(512, 1024, 2048), | |
hd=256, # hidden dim | |
nq=300, # num queries | |
ndp=4, # num decoder points | |
nh=8, # num head | |
ndl=6, # num decoder layers | |
d_ffn=1024, # dim of feedforward | |
dropout=0., | |
act=nn.ReLU(), | |
eval_idx=-1, | |
# training args | |
nd=100, # num denoising | |
label_noise_ratio=0.5, | |
box_noise_scale=1.0, | |
learnt_init_query=False): | |
super().__init__() | |
self.hidden_dim = hd | |
self.nhead = nh | |
self.nl = len(ch) # num level | |
self.nc = nc | |
self.num_queries = nq | |
self.num_decoder_layers = ndl | |
# backbone feature projection | |
self.input_proj = nn.ModuleList(nn.Sequential(nn.Conv2d(x, hd, 1, bias=False), nn.BatchNorm2d(hd)) for x in ch) | |
# NOTE: simplified version but it's not consistent with .pt weights. | |
# self.input_proj = nn.ModuleList(Conv(x, hd, act=False) for x in ch) | |
# Transformer module | |
decoder_layer = DeformableTransformerDecoderLayer(hd, nh, d_ffn, dropout, act, self.nl, ndp) | |
self.decoder = DeformableTransformerDecoder(hd, decoder_layer, ndl, eval_idx) | |
# denoising part | |
self.denoising_class_embed = nn.Embedding(nc, hd) | |
self.num_denoising = nd | |
self.label_noise_ratio = label_noise_ratio | |
self.box_noise_scale = box_noise_scale | |
# decoder embedding | |
self.learnt_init_query = learnt_init_query | |
if learnt_init_query: | |
self.tgt_embed = nn.Embedding(nq, hd) | |
self.query_pos_head = MLP(4, 2 * hd, hd, num_layers=2) | |
# encoder head | |
self.enc_output = nn.Sequential(nn.Linear(hd, hd), nn.LayerNorm(hd)) | |
self.enc_score_head = nn.Linear(hd, nc) | |
self.enc_bbox_head = MLP(hd, hd, 4, num_layers=3) | |
# decoder head | |
self.dec_score_head = nn.ModuleList([nn.Linear(hd, nc) for _ in range(ndl)]) | |
self.dec_bbox_head = nn.ModuleList([MLP(hd, hd, 4, num_layers=3) for _ in range(ndl)]) | |
self._reset_parameters() | |
def forward(self, x, batch=None): | |
from ultralytics.models.utils.ops import get_cdn_group | |
# input projection and embedding | |
feats, shapes = self._get_encoder_input(x) | |
# prepare denoising training | |
dn_embed, dn_bbox, attn_mask, dn_meta = \ | |
get_cdn_group(batch, | |
self.nc, | |
self.num_queries, | |
self.denoising_class_embed.weight, | |
self.num_denoising, | |
self.label_noise_ratio, | |
self.box_noise_scale, | |
self.training) | |
embed, refer_bbox, enc_bboxes, enc_scores = \ | |
self._get_decoder_input(feats, shapes, dn_embed, dn_bbox) | |
# decoder | |
dec_bboxes, dec_scores = self.decoder(embed, | |
refer_bbox, | |
feats, | |
shapes, | |
self.dec_bbox_head, | |
self.dec_score_head, | |
self.query_pos_head, | |
attn_mask=attn_mask) | |
x = dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta | |
if self.training: | |
return x | |
# (bs, 300, 4+nc) | |
y = torch.cat((dec_bboxes.squeeze(0), dec_scores.squeeze(0).sigmoid()), -1) | |
return y if self.export else (y, x) | |
def _generate_anchors(self, shapes, grid_size=0.05, dtype=torch.float32, device='cpu', eps=1e-2): | |
anchors = [] | |
for i, (h, w) in enumerate(shapes): | |
sy = torch.arange(end=h, dtype=dtype, device=device) | |
sx = torch.arange(end=w, dtype=dtype, device=device) | |
grid_y, grid_x = torch.meshgrid(sy, sx, indexing='ij') if TORCH_1_10 else torch.meshgrid(sy, sx) | |
grid_xy = torch.stack([grid_x, grid_y], -1) # (h, w, 2) | |
valid_WH = torch.tensor([h, w], dtype=dtype, device=device) | |
grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH # (1, h, w, 2) | |
wh = torch.ones_like(grid_xy, dtype=dtype, device=device) * grid_size * (2.0 ** i) | |
anchors.append(torch.cat([grid_xy, wh], -1).view(-1, h * w, 4)) # (1, h*w, 4) | |
anchors = torch.cat(anchors, 1) # (1, h*w*nl, 4) | |
valid_mask = ((anchors > eps) * (anchors < 1 - eps)).all(-1, keepdim=True) # 1, h*w*nl, 1 | |
anchors = torch.log(anchors / (1 - anchors)) | |
anchors = anchors.masked_fill(~valid_mask, float('inf')) | |
return anchors, valid_mask | |
def _get_encoder_input(self, x): | |
# get projection features | |
x = [self.input_proj[i](feat) for i, feat in enumerate(x)] | |
# get encoder inputs | |
feats = [] | |
shapes = [] | |
for feat in x: | |
h, w = feat.shape[2:] | |
# [b, c, h, w] -> [b, h*w, c] | |
feats.append(feat.flatten(2).permute(0, 2, 1)) | |
# [nl, 2] | |
shapes.append([h, w]) | |
# [b, h*w, c] | |
feats = torch.cat(feats, 1) | |
return feats, shapes | |
def _get_decoder_input(self, feats, shapes, dn_embed=None, dn_bbox=None): | |
bs = len(feats) | |
# prepare input for decoder | |
anchors, valid_mask = self._generate_anchors(shapes, dtype=feats.dtype, device=feats.device) | |
features = self.enc_output(valid_mask * feats) # bs, h*w, 256 | |
enc_outputs_scores = self.enc_score_head(features) # (bs, h*w, nc) | |
# query selection | |
# (bs, num_queries) | |
topk_ind = torch.topk(enc_outputs_scores.max(-1).values, self.num_queries, dim=1).indices.view(-1) | |
# (bs, num_queries) | |
batch_ind = torch.arange(end=bs, dtype=topk_ind.dtype).unsqueeze(-1).repeat(1, self.num_queries).view(-1) | |
# (bs, num_queries, 256) | |
top_k_features = features[batch_ind, topk_ind].view(bs, self.num_queries, -1) | |
# (bs, num_queries, 4) | |
top_k_anchors = anchors[:, topk_ind].view(bs, self.num_queries, -1) | |
# dynamic anchors + static content | |
refer_bbox = self.enc_bbox_head(top_k_features) + top_k_anchors | |
enc_bboxes = refer_bbox.sigmoid() | |
if dn_bbox is not None: | |
refer_bbox = torch.cat([dn_bbox, refer_bbox], 1) | |
enc_scores = enc_outputs_scores[batch_ind, topk_ind].view(bs, self.num_queries, -1) | |
embeddings = self.tgt_embed.weight.unsqueeze(0).repeat(bs, 1, 1) if self.learnt_init_query else top_k_features | |
if self.training: | |
refer_bbox = refer_bbox.detach() | |
if not self.learnt_init_query: | |
embeddings = embeddings.detach() | |
if dn_embed is not None: | |
embeddings = torch.cat([dn_embed, embeddings], 1) | |
return embeddings, refer_bbox, enc_bboxes, enc_scores | |
# TODO | |
def _reset_parameters(self): | |
# class and bbox head init | |
bias_cls = bias_init_with_prob(0.01) / 80 * self.nc | |
# NOTE: the weight initialization in `linear_init_` would cause NaN when training with custom datasets. | |
# linear_init_(self.enc_score_head) | |
constant_(self.enc_score_head.bias, bias_cls) | |
constant_(self.enc_bbox_head.layers[-1].weight, 0.) | |
constant_(self.enc_bbox_head.layers[-1].bias, 0.) | |
for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head): | |
# linear_init_(cls_) | |
constant_(cls_.bias, bias_cls) | |
constant_(reg_.layers[-1].weight, 0.) | |
constant_(reg_.layers[-1].bias, 0.) | |
linear_init_(self.enc_output[0]) | |
xavier_uniform_(self.enc_output[0].weight) | |
if self.learnt_init_query: | |
xavier_uniform_(self.tgt_embed.weight) | |
xavier_uniform_(self.query_pos_head.layers[0].weight) | |
xavier_uniform_(self.query_pos_head.layers[1].weight) | |
for layer in self.input_proj: | |
xavier_uniform_(layer[0].weight) | |