Spaces:
Sleeping
Sleeping
Upload engine.py.old
Browse files- demo2/pages/engine.py.old +334 -0
demo2/pages/engine.py.old
ADDED
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#%%
|
2 |
+
import warnings
|
3 |
+
import json
|
4 |
+
import sys
|
5 |
+
import argparse
|
6 |
+
import io
|
7 |
+
import os
|
8 |
+
import pandas as pd
|
9 |
+
import psycopg2
|
10 |
+
import geopandas as gpd
|
11 |
+
import numpy as np
|
12 |
+
from scipy.stats import norm
|
13 |
+
from scipy.interpolate import interp1d
|
14 |
+
|
15 |
+
# Damage States
|
16 |
+
DS_NO = 1
|
17 |
+
DS_SLIGHT = 2
|
18 |
+
DS_MODERATE = 3
|
19 |
+
DS_EXTENSIZE = 4
|
20 |
+
DS_COLLAPSED = 5
|
21 |
+
|
22 |
+
# Hazard Types
|
23 |
+
HAZARD_EARTHQUAKE = "earthquake"
|
24 |
+
HAZARD_FLOOD = "flood"
|
25 |
+
HAZARD_DEBRIS = "debris"
|
26 |
+
|
27 |
+
weights = {
|
28 |
+
"earthquake": {"metric1": 0.2,
|
29 |
+
"metric2": 0.2,
|
30 |
+
"metric3": 0.2,
|
31 |
+
"metric4": 0.2,
|
32 |
+
"metric5": 0.2,
|
33 |
+
"metric6": 0.2,
|
34 |
+
"metric7": 0.2,
|
35 |
+
},
|
36 |
+
"flood": {"metric1": 20,
|
37 |
+
"metric2": 20,
|
38 |
+
"metric3": 20,
|
39 |
+
"metric4": 20,
|
40 |
+
"metric5": 20,
|
41 |
+
"metric6": 20,
|
42 |
+
"metric7": 20,
|
43 |
+
},
|
44 |
+
"debris": {"metric1": 200,
|
45 |
+
"metric2": 200,
|
46 |
+
"metric3": 200,
|
47 |
+
"metric4": 200,
|
48 |
+
"metric5": 200,
|
49 |
+
"metric6": 200,
|
50 |
+
"metric7": 200,
|
51 |
+
}
|
52 |
+
}
|
53 |
+
|
54 |
+
def run_engine(hazard_type, scenario, gdf_intensity, policies=[]):
|
55 |
+
|
56 |
+
building_file = f"building_tv50_{scenario}.geojson"
|
57 |
+
household_file = f"household_tv50_{scenario}.json"
|
58 |
+
individual_file = f"individual_tv50_{scenario}.json"
|
59 |
+
|
60 |
+
threshold = 1
|
61 |
+
threshold_flood = 0.2
|
62 |
+
threshold_flood_distance = 40
|
63 |
+
epsg = 32645 # katmandu
|
64 |
+
|
65 |
+
df_buildings = gpd.read_file(building_file)
|
66 |
+
df_household = pd.read_json(household_file)
|
67 |
+
df_individual = pd.read_json(individual_file)
|
68 |
+
#gdf_intensity = intensity_df.copy()
|
69 |
+
|
70 |
+
# Read vulnerability from this table if hazard is earthquake
|
71 |
+
if hazard_type == HAZARD_EARTHQUAKE:
|
72 |
+
df_eq = pd.read_csv('earthquake_fragility.csv')
|
73 |
+
|
74 |
+
elif hazard_type == HAZARD_FLOOD or hazard_type == HAZARD_DEBRIS:
|
75 |
+
df_flood = pd.read_csv('flood_vulnerability.csv')
|
76 |
+
|
77 |
+
# TODO: Fix the confusion geometry/geograhy etc
|
78 |
+
gdf_buildings = gpd.GeoDataFrame(df_buildings,
|
79 |
+
geometry=gpd.points_from_xy(df_buildings.xcoord, df_buildings.ycoord))
|
80 |
+
|
81 |
+
#
|
82 |
+
# We asssume all input is EPSG:4326
|
83 |
+
gdf_buildings = gdf_buildings.set_crs("EPSG:4326",allow_override=True)
|
84 |
+
#gdf_intensity = gdf_intensity.set_crs("EPSG:4326",allow_override=True)
|
85 |
+
|
86 |
+
# Convert both to the same target coordinate system
|
87 |
+
print(epsg)
|
88 |
+
gdf_buildings = gdf_buildings.to_crs(f"EPSG:{epsg}")
|
89 |
+
#gdf_intensity = gdf_intensity.to_crs(f"EPSG:{epsg}")
|
90 |
+
|
91 |
+
#%%
|
92 |
+
gdf_building_intensity = gpd.sjoin_nearest(gdf_buildings,gdf_intensity,
|
93 |
+
how='left', rsuffix='intensity',distance_col='distance')
|
94 |
+
gdf_building_intensity = gdf_building_intensity.drop_duplicates(subset=['bldid'], keep='first')
|
95 |
+
|
96 |
+
# TODO: Check if the logic makes sense
|
97 |
+
if hazard_type == HAZARD_FLOOD or hazard_type == HAZARD_DEBRIS:
|
98 |
+
away_from_flood = gdf_building_intensity['distance'] > threshold_flood_distance
|
99 |
+
print('threshold_flood_distance',threshold_flood_distance)
|
100 |
+
print('number of distant buildings', len(gdf_building_intensity.loc[away_from_flood, 'im']))
|
101 |
+
gdf_building_intensity.loc[away_from_flood, 'im'] = 0
|
102 |
+
|
103 |
+
#%%
|
104 |
+
gdf_building_intensity[['material','code_level','storeys','occupancy']] = \
|
105 |
+
gdf_building_intensity['expstr'].str.split('+',expand=True)
|
106 |
+
gdf_building_intensity['height'] = gdf_building_intensity['storeys'].str.extract(r'([0-9]+)s').astype('int')
|
107 |
+
#%%
|
108 |
+
lr = (gdf_building_intensity['height'] <= 4)
|
109 |
+
mr = (gdf_building_intensity['height'] >= 5) & (gdf_building_intensity['height'] <= 8)
|
110 |
+
hr = (gdf_building_intensity['height'] >= 9)
|
111 |
+
gdf_building_intensity.loc[lr, 'height_level'] = 'LR'
|
112 |
+
gdf_building_intensity.loc[mr, 'height_level'] = 'MR'
|
113 |
+
gdf_building_intensity.loc[hr, 'height_level'] = 'HR'
|
114 |
+
|
115 |
+
#%%
|
116 |
+
gdf_building_intensity['vulnstreq'] = \
|
117 |
+
gdf_building_intensity[['material','code_level','height_level']] \
|
118 |
+
.agg('+'.join,axis=1)
|
119 |
+
|
120 |
+
#%%
|
121 |
+
if hazard_type == HAZARD_EARTHQUAKE:
|
122 |
+
bld_eq = gdf_building_intensity.merge(df_eq, on='vulnstreq', how='left')
|
123 |
+
nulls = bld_eq['muds1_g'].isna()
|
124 |
+
bld_eq.loc[nulls, ['muds1_g','muds2_g','muds3_g','muds4_g']] = [0.048,0.203,0.313,0.314]
|
125 |
+
bld_eq.loc[nulls, ['sigmads1','sigmads2','sigmads3','sigmads4']] = [0.301,0.276,0.252,0.253]
|
126 |
+
bld_eq['logim'] = np.log(bld_eq['im']/9.81)
|
127 |
+
for m in ['muds1_g','muds2_g','muds3_g','muds4_g']:
|
128 |
+
bld_eq[m] = np.log(bld_eq[m])
|
129 |
+
|
130 |
+
for i in [1,2,3,4]:
|
131 |
+
bld_eq[f'prob_ds{i}'] = norm.cdf(bld_eq['logim'],bld_eq[f'muds{i}_g'],bld_eq[f'sigmads{i}'])
|
132 |
+
bld_eq[['prob_ds0','prob_ds5']] = [1,0]
|
133 |
+
for i in [1,2,3,4,5]:
|
134 |
+
bld_eq[f'ds_{i}'] = np.abs(bld_eq[f'prob_ds{i-1}'] - bld_eq[f'prob_ds{i}'])
|
135 |
+
df_ds = bld_eq[['ds_1','ds_2','ds_3','ds_4','ds_5']]
|
136 |
+
bld_eq['eq_ds'] = df_ds.idxmax(axis='columns').str.extract(r'ds_([0-9]+)').astype('int')
|
137 |
+
|
138 |
+
# Create a simplified building-hazard relation
|
139 |
+
bld_hazard = bld_eq[['bldid','occupancy','eq_ds']]
|
140 |
+
bld_hazard = bld_hazard.rename(columns={'eq_ds':'ds'})
|
141 |
+
|
142 |
+
ds_str = {1: 'No Damage',2:'Low',3:'Medium',4:'High',5:'Collapsed'}
|
143 |
+
|
144 |
+
elif hazard_type == HAZARD_FLOOD or hazard_type == HAZARD_DEBRIS:
|
145 |
+
bld_flood = gdf_building_intensity.merge(df_flood, on='expstr', how='left')
|
146 |
+
x = np.array([0,0.5,1,1.5,2,3,4,5,6])
|
147 |
+
y = bld_flood[['hw0','hw0.5','hw1','hw1.5','hw2','hw3','hw4','hw5','hw6']].to_numpy()
|
148 |
+
xnew = bld_flood['im'].to_numpy()
|
149 |
+
flood_mapping = interp1d(x,y,axis=1,kind='linear',bounds_error=False, fill_value=(0,1))
|
150 |
+
# TODO: find another way for vectorized interpolate
|
151 |
+
bld_flood['fl_prob'] = np.diag(flood_mapping(xnew))
|
152 |
+
bld_flood['fl_ds'] = 0
|
153 |
+
bld_flood.loc[bld_flood['fl_prob'] > threshold_flood,'fl_ds'] = 1
|
154 |
+
|
155 |
+
# Create a simplified building-hazard relation
|
156 |
+
bld_hazard = bld_flood[['bldid','occupancy','fl_ds']]
|
157 |
+
bld_hazard = bld_hazard.rename(columns={'fl_ds':'ds'})
|
158 |
+
|
159 |
+
ds_str = {0: 'No Damage',1:'Flooded'}
|
160 |
+
|
161 |
+
bld_hazard['occupancy'] = pd.Categorical(bld_hazard['occupancy'])
|
162 |
+
for key, value in ds_str.items():
|
163 |
+
bld_hazard.loc[bld_hazard['ds'] == key,'damage_level'] = value
|
164 |
+
bld_hazard['damage_level'] = pd.Categorical(bld_hazard['damage_level'], list(ds_str.values()))
|
165 |
+
|
166 |
+
#%% Find the damage state of the building that the household is in
|
167 |
+
df_household_bld = df_household.merge(bld_hazard[['bldid','ds']], on='bldid', how='left',validate='many_to_one')
|
168 |
+
#%% find the damage state of the hospital that the household is associated with
|
169 |
+
df_hospitals = df_household.merge(bld_hazard[['bldid','damage_level', 'ds']],
|
170 |
+
how='left', left_on='commfacid', right_on='bldid', suffixes=['','_comm'],
|
171 |
+
validate='many_to_one')
|
172 |
+
#%%
|
173 |
+
df_workers = df_individual.merge(bld_hazard[['bldid','damage_level', 'ds']],
|
174 |
+
how='left', left_on='indivfacid_2', right_on='bldid',
|
175 |
+
suffixes=['_l','_r'],validate='many_to_one')
|
176 |
+
|
177 |
+
#%%
|
178 |
+
df_students = df_individual.merge(bld_hazard[['bldid','damage_level', 'ds']],
|
179 |
+
how='left', left_on='indivfacid_1', right_on='bldid',
|
180 |
+
suffixes=['_l','_r'],validate='many_to_one')
|
181 |
+
#%%
|
182 |
+
df_indiv_hosp = df_individual.merge(df_hospitals[['hhid','ds','bldid']],
|
183 |
+
how='left', on='hhid', validate='many_to_one')
|
184 |
+
#%%
|
185 |
+
# get the ds of household that individual lives in
|
186 |
+
df_indiv_household = df_individual[['hhid','individ']].merge(df_household_bld[['hhid','ds']])
|
187 |
+
|
188 |
+
df_displaced_indiv = df_indiv_hosp.rename(columns={'ds':'ds_hospital'})\
|
189 |
+
.merge(df_workers[['individ','ds']].rename(columns={'ds':'ds_workplace'}),on='individ', how='inner')\
|
190 |
+
.merge(df_students[['individ','ds']].rename(columns={'ds':'ds_school'}), on='individ', how='inner')\
|
191 |
+
.merge(df_indiv_household[['individ','ds']].rename(columns={'ds':'ds_household'}), on='individ',how='left')
|
192 |
+
#%%
|
193 |
+
if hazard_type == HAZARD_EARTHQUAKE:
|
194 |
+
# Effect of policies on thresholds
|
195 |
+
# First get the global threshold
|
196 |
+
thresholds = {f'metric{id}': threshold for id in range(8)}
|
197 |
+
else:
|
198 |
+
# Default thresholds for flood and debris
|
199 |
+
# For flood, there are only two states: 0 or 1.
|
200 |
+
# So threshold is set to 0.
|
201 |
+
thresholds = {f'metric{id}': 0 for id in range(8)}
|
202 |
+
|
203 |
+
# Policy 6 is valid for all three hazard types
|
204 |
+
# Policy-6: Compulsory content insurance for schools and hospitals
|
205 |
+
# increases threshold for loss of edu/health in all hazard-types from minor to moderate
|
206 |
+
# slight to moderate
|
207 |
+
if 6 in policies and thresholds['metric3'] == DS_NO:
|
208 |
+
thresholds['metric3'] = DS_SLIGHT
|
209 |
+
if 6 in policies and thresholds['metric2'] == DS_NO:
|
210 |
+
thresholds['metric2'] = DS_SLIGHT
|
211 |
+
|
212 |
+
if hazard_type == HAZARD_EARTHQUAKE:
|
213 |
+
# Policy-1: Loans for reconstruction for minor to moderate damages
|
214 |
+
# Changes: Damage state thresholds for “displacement”
|
215 |
+
# Increase thresholds from “slight to moderate” as fewer people will be displaced.
|
216 |
+
if 1 in policies and thresholds['metric7'] == DS_NO:
|
217 |
+
thresholds['metric7'] = DS_SLIGHT
|
218 |
+
|
219 |
+
# Policy-3: Cat-bond agreement for education and health facilities
|
220 |
+
# Changes: Damage state thresholds for “loss of access to hospitals” and “loss of access to schools”
|
221 |
+
# Increase thresholds from “slight to moderate” as fewer people will be displaced.
|
222 |
+
if 3 in policies and thresholds['metric3'] == DS_NO:
|
223 |
+
thresholds['metric3'] = DS_SLIGHT
|
224 |
+
if 3 in policies and thresholds['metric2'] == DS_NO:
|
225 |
+
thresholds['metric2'] = DS_SLIGHT
|
226 |
+
|
227 |
+
# Policy-2: Knowledge sharing about DRR in public and private schools
|
228 |
+
# Changes: Damage state thresholds for “loss of school access”
|
229 |
+
# Increase thresholds loss of school access to beyond current scale. So that the impact will be downgraded to “0”.
|
230 |
+
if 2 in policies:
|
231 |
+
thresholds['metric2'] = DS_COLLAPSED
|
232 |
+
|
233 |
+
if hazard_type == HAZARD_FLOOD:
|
234 |
+
# Polcy-4: Repair loan assistance for flooding
|
235 |
+
# we have only two states 0/1. So if this policy
|
236 |
+
# is effective, increase it to 1 meaning that
|
237 |
+
# population displacement is solved
|
238 |
+
if 4 in policies:
|
239 |
+
thresholds['metric6'] = 1
|
240 |
+
|
241 |
+
if hazard_type == HAZARD_FLOOD or hazard_type == HAZARD_DEBRIS:
|
242 |
+
# Policy-5: Technical assistance for debris removal in education facilities
|
243 |
+
# loss of education is solved via this policy. For both flood and debris
|
244 |
+
# loss of education metric is fixed.
|
245 |
+
if 5 in policies:
|
246 |
+
thresholds['metric2'] = 1
|
247 |
+
|
248 |
+
#%% metric 1 number of unemployed workers in each building
|
249 |
+
df_workers_per_building = df_workers[df_workers['ds'] > thresholds['metric1']].groupby('bldid',as_index=False).agg({'individ':'count'})
|
250 |
+
df_metric1 = bld_hazard.merge(df_workers_per_building,how='left',left_on='bldid',right_on = 'bldid')[['bldid','individ']]
|
251 |
+
df_metric1.rename(columns={'individ':'metric1'}, inplace=True)
|
252 |
+
df_metric1['metric1'] = df_metric1['metric1'].fillna(0).astype(int)
|
253 |
+
|
254 |
+
#%% metric 2 number of students in each building with no access to schools
|
255 |
+
df_students_per_building = df_students[df_students['ds'] > thresholds['metric2']].groupby('bldid',as_index=False).agg({'individ':'count'})
|
256 |
+
df_metric2 = bld_hazard.merge(df_students_per_building,how='left',left_on='bldid',right_on = 'bldid')[['bldid','individ']]
|
257 |
+
df_metric2.rename(columns={'individ':'metric2'}, inplace=True)
|
258 |
+
df_metric2['metric2'] = df_metric2['metric2'].fillna(0).astype(int)
|
259 |
+
|
260 |
+
#%% metric 3 number of households in each building with no access to hospitals
|
261 |
+
df_hospitals_per_household = df_hospitals[df_hospitals['ds'] > thresholds['metric3']].groupby('bldid',as_index=False).agg({'hhid':'count'})
|
262 |
+
df_metric3 = bld_hazard.merge(df_hospitals_per_household,how='left',left_on='bldid',right_on='bldid')[['bldid','hhid']]
|
263 |
+
df_metric3.rename(columns={'hhid':'metric3'}, inplace=True)
|
264 |
+
df_metric3['metric3'] = df_metric3['metric3'].fillna(0).astype(int)
|
265 |
+
|
266 |
+
#%% metric 4 number of individuals in each building with no access to hospitals
|
267 |
+
df_hospitals_per_individual = df_hospitals[df_hospitals['ds'] > thresholds['metric4']].groupby('bldid',as_index=False).agg({'nind':'sum'})
|
268 |
+
df_metric4 = bld_hazard.merge(df_hospitals_per_individual,how='left',left_on='bldid',right_on='bldid')[['bldid','nind']]
|
269 |
+
df_metric4.rename(columns={'nind':'metric4'}, inplace=True)
|
270 |
+
df_metric4['metric4'] = df_metric4['metric4'].fillna(0).astype(int)
|
271 |
+
|
272 |
+
#%% metric 5 number of damaged households in each building
|
273 |
+
df_homeless_households = df_household_bld[df_household_bld['ds'] > thresholds['metric5']].groupby('bldid',as_index=False).agg({'hhid':'count'})
|
274 |
+
df_metric5 = bld_hazard.merge(df_homeless_households,how='left',left_on='bldid',right_on='bldid')[['bldid','hhid']]
|
275 |
+
df_metric5.rename(columns={'hhid':'metric5'}, inplace=True)
|
276 |
+
df_metric5['metric5'] = df_metric5['metric5'].fillna(0).astype(int)
|
277 |
+
|
278 |
+
#%% metric 6 number of homeless individuals in each building
|
279 |
+
df_homeless_individuals = df_household_bld[df_household_bld['ds'] > thresholds['metric6']].groupby('bldid',as_index=False).agg({'nind':'sum'})
|
280 |
+
df_metric6 = bld_hazard.merge(df_homeless_individuals,how='left',left_on='bldid',right_on='bldid')[['bldid','nind']]
|
281 |
+
df_metric6.rename(columns={'nind':'metric6'}, inplace=True)
|
282 |
+
df_metric6['metric6'] = df_metric6['metric6'].fillna(0).astype(int)
|
283 |
+
|
284 |
+
#%% metric 7 the number of displaced individuals in each building
|
285 |
+
# more info: an individual is displaced if at least of the conditions below hold
|
286 |
+
df_disp_per_bld = df_displaced_indiv[(df_displaced_indiv['ds_household'] > thresholds['metric6']) |
|
287 |
+
(df_displaced_indiv['ds_school'] > thresholds['metric7']) |
|
288 |
+
(df_displaced_indiv['ds_workplace'] > thresholds['metric7']) |
|
289 |
+
(df_displaced_indiv['ds_hospital'] > thresholds['metric7'])].groupby('bldid',as_index=False).agg({'individ':'count'})
|
290 |
+
df_metric7 = bld_hazard.merge(df_disp_per_bld,how='left',left_on='bldid',right_on='bldid')[['bldid','individ']]
|
291 |
+
df_metric7.rename(columns={'individ':'metric7'}, inplace=True)
|
292 |
+
df_metric7['metric7'] = df_metric7['metric7'].fillna(0).astype(int)
|
293 |
+
|
294 |
+
df_metrics = {'metric1': df_metric1,
|
295 |
+
'metric2': df_metric2,
|
296 |
+
'metric3': df_metric3,
|
297 |
+
'metric4': df_metric4,
|
298 |
+
'metric5': df_metric5,
|
299 |
+
'metric6': df_metric6,
|
300 |
+
'metric7': df_metric7}
|
301 |
+
|
302 |
+
#%%
|
303 |
+
number_of_workers = len(df_workers.loc[df_workers['indivfacid_2'] > 0])
|
304 |
+
print('number of workers', number_of_workers)
|
305 |
+
|
306 |
+
number_of_students = len(df_workers.loc[df_students['indivfacid_1'] > 0])
|
307 |
+
print('number of students', number_of_students)
|
308 |
+
|
309 |
+
number_of_households = len(df_household)
|
310 |
+
print('number of households', number_of_households)
|
311 |
+
|
312 |
+
number_of_individuals = len(df_individual)
|
313 |
+
print('number of individuals', number_of_individuals)
|
314 |
+
metrics = {"metric1": {"desc": "Number of workers unemployed", "value": 0, "max_value": number_of_individuals},
|
315 |
+
"metric2": {"desc": "Number of children with no access to education", "value": 0, "max_value": number_of_individuals},
|
316 |
+
"metric3": {"desc": "Number of households with no access to hospital", "value": 0, "max_value": number_of_individuals},
|
317 |
+
"metric4": {"desc": "Number of individuals with no access to hospital", "value": 0, "max_value": number_of_individuals},
|
318 |
+
"metric5": {"desc": "Number of homeless households", "value": 0, "max_value": number_of_individuals},
|
319 |
+
"metric6": {"desc": "Number of homeless individuals", "value": 0, "max_value": number_of_individuals},
|
320 |
+
"metric7": {"desc": "Population displacement", "value": 0, "max_value": number_of_individuals},}
|
321 |
+
metrics["metric1"]["value"] = int(df_metric1['metric1'].sum())
|
322 |
+
metrics["metric2"]["value"] = int(df_metric2['metric2'].sum())
|
323 |
+
metrics["metric3"]["value"] = int(df_metric3['metric3'].sum())
|
324 |
+
metrics["metric4"]["value"] = int(df_metric4['metric4'].sum())
|
325 |
+
metrics["metric5"]["value"] = int(df_metric5['metric5'].sum())
|
326 |
+
metrics["metric6"]["value"] = int(df_metric6['metric6'].sum())
|
327 |
+
metrics["metric7"]["value"] = int(df_metric7['metric7'].sum())
|
328 |
+
|
329 |
+
for key in metrics.keys():
|
330 |
+
metrics[key]["value"] = int(metrics[key]["value"] * weights[hazard_type][key])
|
331 |
+
|
332 |
+
# return to WSG
|
333 |
+
return metrics
|
334 |
+
|