# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import numpy as np import torch from PIL import Image from torch import nn import cv2 from torch.nn import functional as F from maskrcnn_benchmark.structures.bounding_box import BoxList # TODO check if want to return a single BoxList or a composite # object class MaskPostProcessor(nn.Module): """ From the results of the CNN, post process the masks by taking the mask corresponding to the class with max probability (which are of fixed size and directly output by the CNN) and return the masks in the mask field of the BoxList. If a masker object is passed, it will additionally project the masks in the image according to the locations in boxes, """ def __init__(self, masker=None): super(MaskPostProcessor, self).__init__() self.masker = masker def forward(self, x, boxes): """ Arguments: x (Tensor): the mask logits boxes (list[BoxList]): bounding boxes that are used as reference, one for ech image Returns: results (list[BoxList]): one BoxList for each image, containing the extra field mask """ mask_prob = x.sigmoid() # select masks coresponding to the predicted classes num_masks = x.shape[0] labels = [bbox.get_field("labels") for bbox in boxes] labels = torch.cat(labels) index = torch.arange(num_masks, device=labels.device) mask_prob = mask_prob[index, labels][:, None] if self.masker: mask_prob = self.masker(mask_prob, boxes) boxes_per_image = [len(box) for box in boxes] mask_prob = mask_prob.split(boxes_per_image, dim=0) results = [] for prob, box in zip(mask_prob, boxes): bbox = BoxList(box.bbox, box.size, mode="xyxy") for field in box.fields(): bbox.add_field(field, box.get_field(field)) bbox.add_field("mask", prob) results.append(bbox) return results # TODO class CharMaskPostProcessor(nn.Module): """ From the results of the CNN, post process the masks by taking the mask corresponding to the class with max probability (which are of fixed size and directly output by the CNN) and return the masks in the mask field of the BoxList. If a masker object is passed, it will additionally project the masks in the image according to the locations in boxes, """ def __init__(self, cfg, masker=None): super(CharMaskPostProcessor, self).__init__() self.masker = masker self.cfg = cfg def forward(self, x, char_mask, boxes, seq_outputs=None, seq_scores=None, detailed_seq_scores=None): """ Arguments: x (Tensor): the mask logits char_mask (Tensor): the char mask logits boxes (list[BoxList]): bounding boxes that are used as reference, one for ech image Returns: results (list[BoxList]): one BoxList for each image, containing the extra field mask """ if x is not None: mask_prob = x.sigmoid() mask_prob = mask_prob.squeeze(dim=1)[:, None] if self.masker: mask_prob = self.masker(mask_prob, boxes) boxes_per_image = [len(box) for box in boxes] if x is not None: mask_prob = mask_prob.split(boxes_per_image, dim=0) if self.cfg.MODEL.CHAR_MASK_ON: char_mask_softmax = F.softmax(char_mask, dim=1) char_results = {'char_mask': char_mask_softmax.cpu().numpy(), 'boxes': boxes[0].bbox.cpu().numpy(), 'seq_outputs': seq_outputs, 'seq_scores': seq_scores, 'detailed_seq_scores': detailed_seq_scores} else: char_results = {'char_mask': None, 'boxes': boxes[0].bbox.cpu().numpy(), 'seq_outputs': seq_outputs, 'seq_scores': seq_scores, 'detailed_seq_scores': detailed_seq_scores} results = [] if x is not None: for prob, box in zip(mask_prob, boxes): bbox = BoxList(box.bbox, box.size, mode="xyxy") for field in box.fields(): bbox.add_field(field, box.get_field(field)) bbox.add_field("mask", prob) results.append(bbox) else: for box in boxes: bbox = BoxList(box.bbox, box.size, mode="xyxy") for field in box.fields(): bbox.add_field(field, box.get_field(field)) results.append(bbox) return [results, char_results] class MaskPostProcessorCOCOFormat(MaskPostProcessor): """ From the results of the CNN, post process the results so that the masks are pasted in the image, and additionally convert the results to COCO format. """ def forward(self, x, boxes): import pycocotools.mask as mask_util import numpy as np results = super(MaskPostProcessorCOCOFormat, self).forward(x, boxes) for result in results: masks = result.get_field("mask").cpu() rles = [ mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0] for mask in masks ] for rle in rles: rle["counts"] = rle["counts"].decode("utf-8") result.add_field("mask", rles) return results # the next two functions should be merged inside Masker # but are kept here for the moment while we need them # temporarily gor paste_mask_in_image def expand_boxes(boxes, scale): w_half = (boxes[:, 2] - boxes[:, 0]) * .5 h_half = (boxes[:, 3] - boxes[:, 1]) * .5 x_c = (boxes[:, 2] + boxes[:, 0]) * .5 y_c = (boxes[:, 3] + boxes[:, 1]) * .5 w_half *= scale[1] h_half *= scale[0] boxes_exp = torch.zeros_like(boxes) boxes_exp[:, 0] = x_c - w_half boxes_exp[:, 2] = x_c + w_half boxes_exp[:, 1] = y_c - h_half boxes_exp[:, 3] = y_c + h_half return boxes_exp def expand_masks(mask, padding): N = mask.shape[0] M_H = mask.shape[-2] M_W = mask.shape[-1] pad2 = 2 * padding scale = (float(M_H + pad2) / M_H, float(M_W + pad2) / M_W) padded_mask = mask.new_zeros((N, 1, M_H + pad2, M_W + pad2)) padded_mask[:, :, padding:-padding, padding:-padding] = mask return padded_mask, scale def paste_mask_in_image(mask, box, im_h, im_w, thresh=0.5, padding=1): # Need to work on the CPU, where fp16 isn't supported - cast to float to avoid this mask = mask.float() box = box.float() padded_mask, scale = expand_masks(mask[None], padding=padding) mask = padded_mask[0, 0] box = expand_boxes(box[None], scale)[0] box = box.numpy().astype(np.int32) TO_REMOVE = 1 w = box[2] - box[0] + TO_REMOVE h = box[3] - box[1] + TO_REMOVE w = max(w, 1) h = max(h, 1) mask = Image.fromarray(mask.cpu().numpy()) mask = mask.resize((w, h), resample=Image.BILINEAR) mask = np.array(mask, copy=False) if thresh >= 0: mask = np.array(mask > thresh, dtype=np.uint8) mask = torch.from_numpy(mask) else: # for visualization and debugging, we also # allow it to return an unmodified mask mask = torch.from_numpy(mask * 255).to(torch.bool) im_mask = torch.zeros((im_h, im_w), dtype=torch.bool) x_0 = max(box[0], 0) x_1 = min(box[2] + 1, im_w) y_0 = max(box[1], 0) y_1 = min(box[3] + 1, im_h) im_mask[y_0:y_1, x_0:x_1] = mask[ (y_0 - box[1]) : (y_1 - box[1]), (x_0 - box[0]) : (x_1 - box[0]) ] return im_mask class Masker(object): """ Projects a set of masks in an image on the locations specified by the bounding boxes """ def __init__(self, threshold=0.5, padding=1): self.threshold = threshold self.padding = padding def forward_single_image(self, masks, boxes): boxes = boxes.convert("xyxy") im_w, im_h = boxes.size res = [ paste_mask_in_image(mask[0], box, im_h, im_w, self.threshold, self.padding) for mask, box in zip(masks, boxes.bbox) ] if len(res) > 0: res = torch.stack(res, dim=0)[:, None] else: res = masks.new_empty((0, 1, masks.shape[-2], masks.shape[-1])) return res def __call__(self, masks, boxes): # TODO do this properly if isinstance(boxes, BoxList): boxes = [boxes] assert len(boxes) == 1, "Only single image batch supported" result = self.forward_single_image(masks, boxes[0]) return result def make_roi_mask_post_processor(cfg): masker = None if cfg.MODEL.CHAR_MASK_ON or cfg.SEQUENCE.SEQ_ON: mask_post_processor = CharMaskPostProcessor(cfg, masker) else: mask_post_processor = MaskPostProcessor(masker) return mask_post_processor