File size: 8,431 Bytes
c310e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch

# from maskrcnn_benchmark.layers import smooth_l1_loss
from maskrcnn_benchmark.modeling.matcher import Matcher
from maskrcnn_benchmark.modeling.utils import cat
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou
from torch.nn import functional as F


def project_masks_on_boxes(segmentation_masks, proposals, discretization_size):
    """
    Given segmentation masks and the bounding boxes corresponding
    to the location of the masks in the image, this function
    crops and resizes the masks in the position defined by the
    boxes. This prepares the masks for them to be fed to the
    loss computation as the targets.

    Arguments:
        segmentation_masks: an instance of SegmentationMask
        proposals: an instance of BoxList
    """
    masks = []
    M = discretization_size
    device = proposals.bbox.device
    proposals = proposals.convert("xyxy")
    assert segmentation_masks.size == proposals.size, "{}, {}".format(
        segmentation_masks, proposals
    )
    # TODO put the proposals on the CPU, as the representation for the
    # masks is not efficient GPU-wise (possibly several small tensors for
    # representing a single instance mask)
    proposals = proposals.bbox.to(torch.device("cpu"))
    for segmentation_mask, proposal in zip(segmentation_masks, proposals):
        # crop the masks, resize them to the desired resolution and
        # then convert them to the tensor representation,
        # instead of the list representation that was used
        cropped_mask = segmentation_mask.crop(proposal)
        scaled_mask = cropped_mask.resize((M, M))
        mask = scaled_mask.convert(mode="mask")
        masks.append(mask)
    if len(masks) == 0:
        return torch.empty(0, dtype=torch.float32, device=device)
    return torch.stack(masks, dim=0).to(device, dtype=torch.float32)


class MaskRCNNLossComputation(object):
    def __init__(self, proposal_matcher, discretization_size):
        """
        Arguments:
            proposal_matcher (Matcher)
            discretization_size (int)
        """
        self.proposal_matcher = proposal_matcher
        self.discretization_size = discretization_size

    def match_targets_to_proposals(self, proposal, target):
        match_quality_matrix = boxlist_iou(target, proposal)
        matched_idxs = self.proposal_matcher(match_quality_matrix)
        # Mask RCNN needs "labels" and "masks "fields for creating the targets
        target = target.copy_with_fields(["labels", "masks"])
        # get the targets corresponding GT for each proposal
        # NB: need to clamp the indices because we can have a single
        # GT in the image, and matched_idxs can be -2, which goes
        # out of bounds
        matched_targets = target[matched_idxs.clamp(min=0)]
        matched_targets.add_field("matched_idxs", matched_idxs)
        return matched_targets

    def prepare_targets(self, proposals, targets):
        labels = []
        masks = []
        for proposals_per_image, targets_per_image in zip(proposals, targets):
            matched_targets = self.match_targets_to_proposals(
                proposals_per_image, targets_per_image
            )
            matched_idxs = matched_targets.get_field("matched_idxs")

            labels_per_image = matched_targets.get_field("labels")
            labels_per_image = labels_per_image.to(dtype=torch.int64)

            # this can probably be removed, but is left here for clarity
            # and completeness
            neg_inds = matched_idxs == Matcher.BELOW_LOW_THRESHOLD
            labels_per_image[neg_inds] = 0

            # mask scores are only computed on positive samples
            positive_inds = torch.nonzero(labels_per_image > 0).squeeze(1)

            segmentation_masks = matched_targets.get_field("masks")
            segmentation_masks = segmentation_masks[positive_inds]

            positive_proposals = proposals_per_image[positive_inds]

            masks_per_image = project_masks_on_boxes(
                segmentation_masks, positive_proposals, self.discretization_size
            )

            labels.append(labels_per_image)
            masks.append(masks_per_image)

        return labels, masks

    def __call__(self, proposals, mask_logits, targets):
        """
        Arguments:
            proposals (list[BoxList])
            mask_logits (Tensor)
            targets (list[BoxList])

        Return:
            mask_loss (Tensor): scalar tensor containing the loss
        """
        labels, mask_targets = self.prepare_targets(proposals, targets)

        labels = cat(labels, dim=0)
        mask_targets = cat(mask_targets, dim=0)

        positive_inds = torch.nonzero(labels > 0).squeeze(1)
        labels_pos = labels[positive_inds]

        # torch.mean (in binary_cross_entropy_with_logits) doesn't
        # accept empty tensors, so handle it separately
        if mask_targets.numel() == 0:
            return mask_logits.sum() * 0

        mask_loss = F.binary_cross_entropy_with_logits(
            mask_logits[positive_inds, labels_pos], mask_targets
        )
        return mask_loss


class CharMaskRCNNLossComputation(object):
    def __init__(self, use_weighted_loss=False):
        """
        Arguments:
            proposal_matcher (Matcher)
            discretization_size (int)
        """
        self.use_weighted_loss = use_weighted_loss

    def __call__(
        self,
        proposals,
        mask_logits,
        char_mask_logits,
        mask_targets,
        char_mask_targets,
        char_mask_weights,
    ):
        """
        Arguments:
            proposals (list[BoxList])
            mask_logits (Tensor)
            targets (list[BoxList])

        Return:
            mask_loss (Tensor): scalar tensor containing the loss
        """
        mask_targets = cat(mask_targets, dim=0)
        char_mask_targets = cat(char_mask_targets, dim=0)
        char_mask_weights = cat(char_mask_weights, dim=0)
        char_mask_weights = char_mask_weights.mean(dim=0)

        # torch.mean (in binary_cross_entropy_with_logits) doesn't
        # accept empty tensors, so handle it separately
        if mask_targets.numel() == 0 or char_mask_targets.numel() == 0:
            return mask_logits.sum() * 0, char_mask_targets.sum() * 0

        mask_loss = F.binary_cross_entropy_with_logits(
            mask_logits.squeeze(dim=1), mask_targets
        )
        if self.use_weighted_loss:
            char_mask_loss = F.cross_entropy(
                char_mask_logits, char_mask_targets, char_mask_weights, ignore_index=-1
            )
        else:
            char_mask_loss = F.cross_entropy(
                char_mask_logits, char_mask_targets, ignore_index=-1
            )
        return mask_loss, char_mask_loss

class SeqMaskRCNNLossComputation(object):
    def __init__(self):
        """
        Arguments:
            proposal_matcher (Matcher)
            discretization_size (int)
        """

    def __call__(
        self,
        proposals,
        mask_logits,
        mask_targets,
    ):
        """
        Arguments:
            proposals (list[BoxList])
            mask_logits (Tensor)
            targets (list[BoxList])

        Return:
            mask_loss (Tensor): scalar tensor containing the loss
        """
        mask_targets = cat(mask_targets, dim=0)

        # torch.mean (in binary_cross_entropy_with_logits) doesn't
        # accept empty tensors, so handle it separately
        if mask_targets.numel() == 0:
            return mask_logits.sum() * 0

        mask_loss = F.binary_cross_entropy_with_logits(
            mask_logits.squeeze(dim=1), mask_targets
        )
        return mask_loss


def make_roi_mask_loss_evaluator(cfg):
    matcher = Matcher(
        cfg.MODEL.ROI_HEADS.FG_IOU_THRESHOLD,
        cfg.MODEL.ROI_HEADS.BG_IOU_THRESHOLD,
        allow_low_quality_matches=False,
    )
    if cfg.MODEL.CHAR_MASK_ON:
        loss_evaluator = CharMaskRCNNLossComputation(
            use_weighted_loss=cfg.MODEL.ROI_MASK_HEAD.USE_WEIGHTED_CHAR_MASK
        )
    else:
        if cfg.SEQUENCE.SEQ_ON:
            loss_evaluator = SeqMaskRCNNLossComputation()
        else:
            loss_evaluator = MaskRCNNLossComputation(
                matcher, cfg.MODEL.ROI_MASK_HEAD.RESOLUTION
            )

    return loss_evaluator