Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import cv2 | |
| import numpy as np | |
| from shapely.geometry import LineString, Point | |
| import mmocr.utils as utils | |
| from .box_utils import sort_vertex | |
| def box_jitter(points_x, points_y, jitter_ratio_x=0.5, jitter_ratio_y=0.1): | |
| """Jitter on the coordinates of bounding box. | |
| Args: | |
| points_x (list[float | int]): List of y for four vertices. | |
| points_y (list[float | int]): List of x for four vertices. | |
| jitter_ratio_x (float): Horizontal jitter ratio relative to the height. | |
| jitter_ratio_y (float): Vertical jitter ratio relative to the height. | |
| """ | |
| assert len(points_x) == 4 | |
| assert len(points_y) == 4 | |
| assert isinstance(jitter_ratio_x, float) | |
| assert isinstance(jitter_ratio_y, float) | |
| assert 0 <= jitter_ratio_x < 1 | |
| assert 0 <= jitter_ratio_y < 1 | |
| points = [Point(points_x[i], points_y[i]) for i in range(4)] | |
| line_list = [ | |
| LineString([points[i], points[i + 1 if i < 3 else 0]]) | |
| for i in range(4) | |
| ] | |
| tmp_h = max(line_list[1].length, line_list[3].length) | |
| for i in range(4): | |
| jitter_pixel_x = (np.random.rand() - 0.5) * 2 * jitter_ratio_x * tmp_h | |
| jitter_pixel_y = (np.random.rand() - 0.5) * 2 * jitter_ratio_y * tmp_h | |
| points_x[i] += jitter_pixel_x | |
| points_y[i] += jitter_pixel_y | |
| def warp_img(src_img, | |
| box, | |
| jitter_flag=False, | |
| jitter_ratio_x=0.5, | |
| jitter_ratio_y=0.1): | |
| """Crop box area from image using opencv warpPerspective w/o box jitter. | |
| Args: | |
| src_img (np.array): Image before cropping. | |
| box (list[float | int]): Coordinates of quadrangle. | |
| """ | |
| assert utils.is_type_list(box, (float, int)) | |
| assert len(box) == 8 | |
| h, w = src_img.shape[:2] | |
| points_x = [min(max(x, 0), w) for x in box[0:8:2]] | |
| points_y = [min(max(y, 0), h) for y in box[1:9:2]] | |
| points_x, points_y = sort_vertex(points_x, points_y) | |
| if jitter_flag: | |
| box_jitter( | |
| points_x, | |
| points_y, | |
| jitter_ratio_x=jitter_ratio_x, | |
| jitter_ratio_y=jitter_ratio_y) | |
| points = [Point(points_x[i], points_y[i]) for i in range(4)] | |
| edges = [ | |
| LineString([points[i], points[i + 1 if i < 3 else 0]]) | |
| for i in range(4) | |
| ] | |
| pts1 = np.float32([[points[i].x, points[i].y] for i in range(4)]) | |
| box_width = max(edges[0].length, edges[2].length) | |
| box_height = max(edges[1].length, edges[3].length) | |
| pts2 = np.float32([[0, 0], [box_width, 0], [box_width, box_height], | |
| [0, box_height]]) | |
| M = cv2.getPerspectiveTransform(pts1, pts2) | |
| dst_img = cv2.warpPerspective(src_img, M, | |
| (int(box_width), int(box_height))) | |
| return dst_img | |
| def crop_img(src_img, box, long_edge_pad_ratio=0.4, short_edge_pad_ratio=0.2): | |
| """Crop text region with their bounding box. | |
| Args: | |
| src_img (np.array): The original image. | |
| box (list[float | int]): Points of quadrangle. | |
| long_edge_pad_ratio (float): Box pad ratio for long edge | |
| corresponding to font size. | |
| short_edge_pad_ratio (float): Box pad ratio for short edge | |
| corresponding to font size. | |
| """ | |
| assert utils.is_type_list(box, (float, int)) | |
| assert len(box) == 8 | |
| assert 0. <= long_edge_pad_ratio < 1.0 | |
| assert 0. <= short_edge_pad_ratio < 1.0 | |
| h, w = src_img.shape[:2] | |
| points_x = np.clip(np.array(box[0::2]), 0, w) | |
| points_y = np.clip(np.array(box[1::2]), 0, h) | |
| box_width = np.max(points_x) - np.min(points_x) | |
| box_height = np.max(points_y) - np.min(points_y) | |
| font_size = min(box_height, box_width) | |
| if box_height < box_width: | |
| horizontal_pad = long_edge_pad_ratio * font_size | |
| vertical_pad = short_edge_pad_ratio * font_size | |
| else: | |
| horizontal_pad = short_edge_pad_ratio * font_size | |
| vertical_pad = long_edge_pad_ratio * font_size | |
| left = np.clip(int(np.min(points_x) - horizontal_pad), 0, w) | |
| top = np.clip(int(np.min(points_y) - vertical_pad), 0, h) | |
| right = np.clip(int(np.max(points_x) + horizontal_pad), 0, w) | |
| bottom = np.clip(int(np.max(points_y) + vertical_pad), 0, h) | |
| dst_img = src_img[top:bottom, left:right] | |
| return dst_img | |