Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 2,321 Bytes
			
			| 2366e36 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | # Copyright (c) OpenMMLab. All rights reserved.
from mmdet.core import BitmapMasks
from mmdet.datasets.builder import PIPELINES
from . import BaseTextDetTargets
@PIPELINES.register_module()
class PANetTargets(BaseTextDetTargets):
    """Generate the ground truths for PANet: Efficient and Accurate Arbitrary-
    Shaped Text Detection with Pixel Aggregation Network.
    [https://arxiv.org/abs/1908.05900]. This code is partially adapted from
    https://github.com/WenmuZhou/PAN.pytorch.
    Args:
        shrink_ratio (tuple[float]): The ratios for shrinking text instances.
        max_shrink (int): The maximum shrink distance.
    """
    def __init__(self, shrink_ratio=(1.0, 0.5), max_shrink=20):
        self.shrink_ratio = shrink_ratio
        self.max_shrink = max_shrink
    def generate_targets(self, results):
        """Generate the gt targets for PANet.
        Args:
            results (dict): The input result dictionary.
        Returns:
            results (dict): The output result dictionary.
        """
        assert isinstance(results, dict)
        polygon_masks = results['gt_masks'].masks
        polygon_masks_ignore = results['gt_masks_ignore'].masks
        h, w, _ = results['img_shape']
        gt_kernels = []
        for ratio in self.shrink_ratio:
            mask, _ = self.generate_kernels((h, w),
                                            polygon_masks,
                                            ratio,
                                            max_shrink=self.max_shrink,
                                            ignore_tags=None)
            gt_kernels.append(mask)
        gt_mask = self.generate_effective_mask((h, w), polygon_masks_ignore)
        results['mask_fields'].clear()  # rm gt_masks encoded by polygons
        if 'bbox_fields' in results:
            results['bbox_fields'].clear()
        results.pop('gt_labels', None)
        results.pop('gt_masks', None)
        results.pop('gt_bboxes', None)
        results.pop('gt_bboxes_ignore', None)
        mapping = {'gt_kernels': gt_kernels, 'gt_mask': gt_mask}
        for key, value in mapping.items():
            value = value if isinstance(value, list) else [value]
            results[key] = BitmapMasks(value, h, w)
            results['mask_fields'].append(key)
        return results
 |