File size: 1,223 Bytes
683cf67
448c406
 
 
683cf67
f1f9df6
666bc15
1e2ba54
666bc15
1e2ba54
666bc15
1e2ba54
666bc15
 
1e2ba54
f1f9df6
1e2ba54
683cf67
448c406
 
 
 
 
 
 
 
beb0ef6
78ebbc1
beb0ef6
666bc15
448c406
909f50c
 
448c406
 
909f50c
448c406
909f50c
 
683cf67
448c406
 
 
683cf67
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import gradio as gr
from langchain import PromptTemplate, LLMChain
from langchain.llms import GPT4All
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler


# import requests

# url = "https://huggingface.co/TheBloke/Nous-Hermes-13B-GGML/resolve/main/nous-hermes-13b.ggmlv3.q4_0.bin"

# response = requests.get(url)

# with open("nous-hermes-13b.ggmlv3.q4_0.bin", "wb") as f:
#     f.write(response.content)


print("DONE")

def func(prompt):
        
    template = """Question: {question}
    
    Answer: Let's think step by step."""
    
    prompt = PromptTemplate(template=template, input_variables=["question"])
    
    local_path = (
        "./nous-hermes-13b.ggmlv3.q4_0.bin"
    )

    
    # # Callbacks support token-wise streaming
    # callbacks = [StreamingStdOutCallbackHandler()]
    
    # Verbose is required to pass to the callback manager
    llm = GPT4All(model="nous-hermes-13b.ggmlv3.q4_0.bin")
    llm_chain = LLMChain(prompt=prompt, llm=llm)
    question = "What NFL team won the Super Bowl in the year Justin Bieber was born?"
    llm_chain.run(question)

    return llm_chain.run(question)

iface = gr.Interface(fn=func, inputs="text", outputs="text")
iface.launch()