tombetthauser commited on
Commit
baf25cb
Β·
1 Parent(s): 87f3904

Add more prints to function

Browse files
Files changed (1) hide show
  1. app.py +15 -0
app.py CHANGED
@@ -97,6 +97,7 @@ pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4",
97
  def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, token=None):
98
  loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
99
 
 
100
  # separate token and the embeds
101
  trained_token = list(loaded_learned_embeds.keys())[0]
102
  embeds = loaded_learned_embeds[trained_token]
@@ -108,10 +109,15 @@ def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, tok
108
  token = token if token is not None else trained_token
109
  num_added_tokens = tokenizer.add_tokens(token)
110
  i = 1
 
111
  while(num_added_tokens == 0):
112
  token = f"{token[:-1]}-{i}>"
113
  num_added_tokens = tokenizer.add_tokens(token)
 
 
 
114
  i+=1
 
115
 
116
  # resize the token embeddings
117
  text_encoder.resize_token_embeddings(len(tokenizer))
@@ -119,9 +125,18 @@ def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, tok
119
  # get the id for the token and assign the embeds
120
  token_id = tokenizer.convert_tokens_to_ids(token)
121
  print("&&&&&&&&&&&&&&&&")
 
 
 
 
 
 
 
 
122
  print("text_encoder --> ", text_encoder)
123
  print("token_id --> ", token_id)
124
  print("embeds --> ", embeds)
 
125
  text_encoder.get_input_embeddings().weight.data[token_id] = embeds # <------ POINT OF FAILURE
126
  return token
127
 
 
97
  def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, token=None):
98
  loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
99
 
100
+ _old_token = token
101
  # separate token and the embeds
102
  trained_token = list(loaded_learned_embeds.keys())[0]
103
  embeds = loaded_learned_embeds[trained_token]
 
109
  token = token if token is not None else trained_token
110
  num_added_tokens = tokenizer.add_tokens(token)
111
  i = 1
112
+ print("start while loop **************")
113
  while(num_added_tokens == 0):
114
  token = f"{token[:-1]}-{i}>"
115
  num_added_tokens = tokenizer.add_tokens(token)
116
+ print("i --> ", i)
117
+ print("token --> ", token)
118
+ print("num_added_tokens --> ", num_added_tokens)
119
  i+=1
120
+ print("end while loop **************")
121
 
122
  # resize the token embeddings
123
  text_encoder.resize_token_embeddings(len(tokenizer))
 
125
  # get the id for the token and assign the embeds
126
  token_id = tokenizer.convert_tokens_to_ids(token)
127
  print("&&&&&&&&&&&&&&&&")
128
+ print("learned_embeds_path --> ", learned_embeds_path)
129
+ print("text_encoder --> ", text_encoder)
130
+ print("tokenizer --> ", tokenizer)
131
+ print("_old_token --> ", _old_token)
132
+ print("token --> ", token)
133
+ print("trained_token --> ", trained_token)
134
+ print("dtype --> ", dtype)
135
+ print("num_added_tokens --> ", num_added_tokens)
136
  print("text_encoder --> ", text_encoder)
137
  print("token_id --> ", token_id)
138
  print("embeds --> ", embeds)
139
+ print("&&&&&&&&&&&&&&&&")
140
  text_encoder.get_input_embeddings().weight.data[token_id] = embeds # <------ POINT OF FAILURE
141
  return token
142