Spaces:
Runtime error
Runtime error
Commit
Β·
323d463
1
Parent(s):
69aef84
Update app.py
Browse filesComment out unnecessary sections and dependencies from colab notebook version
app.py
CHANGED
@@ -17,10 +17,9 @@ import gradio
|
|
17 |
import torch
|
18 |
import os
|
19 |
|
20 |
-
# UNDER CONSTRUCTION
|
21 |
import subprocess
|
22 |
-
#
|
23 |
-
|
24 |
|
25 |
# FOR DEPLOYMENT: uncomment these and delete the notebook_login() below
|
26 |
api_key = os.environ['api_key']
|
@@ -29,23 +28,25 @@ my_token = api_key
|
|
29 |
# from huggingface_hub import notebook_login
|
30 |
# notebook_login()
|
31 |
|
32 |
-
|
33 |
-
|
|
|
34 |
|
35 |
-
def image_grid(imgs, rows, cols):
|
36 |
-
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
45 |
|
46 |
pretrained_model_name_or_path = "stabilityai/stable-diffusion-2"
|
47 |
|
48 |
-
from IPython.display import Markdown
|
49 |
from huggingface_hub import hf_hub_download
|
50 |
|
51 |
|
@@ -86,10 +87,10 @@ for repo_id_embeds in models_to_load:
|
|
86 |
#!cp downloaded_embedding_folder
|
87 |
#!cp downloaded_embedding_folder
|
88 |
|
89 |
-
# UNDER CONSTRUCTION
|
90 |
subprocess.call([f"cp {embeds_path} {downloaded_embedding_folder}"])
|
91 |
subprocess.call([f"cp {token_path} {downloaded_embedding_folder}"])
|
92 |
-
#
|
93 |
|
94 |
with open(f'{downloaded_embedding_folder}/token_identifier.txt', 'r') as file:
|
95 |
placeholder_token_string = file.read()
|
@@ -97,9 +98,9 @@ for repo_id_embeds in models_to_load:
|
|
97 |
# FOR DEPLOYMENT: address file system use
|
98 |
#!wget -q -O $downloaded_embedding_folder/learned_embeds.bin $embeds_url
|
99 |
|
100 |
-
# UNDER CONSTRUCTION
|
101 |
subprocess.call([f"wget -q -O {downloaded_embedding_folder}/learned_embeds.bin {embeds_url}"])
|
102 |
-
#
|
103 |
|
104 |
learned_embeds_path = f"{downloaded_embedding_folder}/learned_embeds.bin"
|
105 |
|
@@ -160,41 +161,44 @@ for repo_id_embeds in models_to_load:
|
|
160 |
|
161 |
#@title 4. Print Available Concept Strings
|
162 |
|
163 |
-
|
164 |
-
print("
|
165 |
-
print("
|
166 |
-
#
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
170 |
|
171 |
#@title 5. Optionally Test without Gradio
|
172 |
|
173 |
-
|
174 |
-
|
|
|
175 |
|
176 |
-
if prompt and model:
|
177 |
-
|
178 |
-
|
179 |
|
180 |
-
|
181 |
-
|
182 |
|
183 |
-
|
184 |
-
|
185 |
|
186 |
-
|
187 |
-
|
188 |
|
189 |
-
|
190 |
-
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
|
196 |
-
|
197 |
-
|
|
|
198 |
|
199 |
|
200 |
#@title 6. Define Custom CSS for Gradio
|
|
|
17 |
import torch
|
18 |
import os
|
19 |
|
20 |
+
# UNDER CONSTRUCTION ---{{{
|
21 |
import subprocess
|
22 |
+
# }}}---
|
|
|
23 |
|
24 |
# FOR DEPLOYMENT: uncomment these and delete the notebook_login() below
|
25 |
api_key = os.environ['api_key']
|
|
|
28 |
# from huggingface_hub import notebook_login
|
29 |
# notebook_login()
|
30 |
|
31 |
+
# NOT NEEDED FOR DEPLOYMENT ---{{{
|
32 |
+
# import PIL
|
33 |
+
# from PIL import Image
|
34 |
|
35 |
+
# def image_grid(imgs, rows, cols):
|
36 |
+
# assert len(imgs) == rows*cols
|
37 |
|
38 |
+
# w, h = imgs[0].size
|
39 |
+
# grid = Image.new('RGB', size=(cols*w, rows*h))
|
40 |
+
# grid_w, grid_h = grid.size
|
41 |
|
42 |
+
# for i, img in enumerate(imgs):
|
43 |
+
# grid.paste(img, box=(i%cols*w, i//cols*h))
|
44 |
+
# return grid
|
45 |
+
# }}}---
|
46 |
|
47 |
pretrained_model_name_or_path = "stabilityai/stable-diffusion-2"
|
48 |
|
49 |
+
# from IPython.display import Markdown
|
50 |
from huggingface_hub import hf_hub_download
|
51 |
|
52 |
|
|
|
87 |
#!cp downloaded_embedding_folder
|
88 |
#!cp downloaded_embedding_folder
|
89 |
|
90 |
+
# UNDER CONSTRUCTION ---{{{
|
91 |
subprocess.call([f"cp {embeds_path} {downloaded_embedding_folder}"])
|
92 |
subprocess.call([f"cp {token_path} {downloaded_embedding_folder}"])
|
93 |
+
# }}}---
|
94 |
|
95 |
with open(f'{downloaded_embedding_folder}/token_identifier.txt', 'r') as file:
|
96 |
placeholder_token_string = file.read()
|
|
|
98 |
# FOR DEPLOYMENT: address file system use
|
99 |
#!wget -q -O $downloaded_embedding_folder/learned_embeds.bin $embeds_url
|
100 |
|
101 |
+
# UNDER CONSTRUCTION ---{{{
|
102 |
subprocess.call([f"wget -q -O {downloaded_embedding_folder}/learned_embeds.bin {embeds_url}"])
|
103 |
+
# }}}---
|
104 |
|
105 |
learned_embeds_path = f"{downloaded_embedding_folder}/learned_embeds.bin"
|
106 |
|
|
|
161 |
|
162 |
#@title 4. Print Available Concept Strings
|
163 |
|
164 |
+
# NOT NEEDED FOR DEPLOYMENT ---{{{
|
165 |
+
# print("AVAILABLE CONCEPTS TO SELECT FROM")
|
166 |
+
# print("copy one and paste below under 'model'")
|
167 |
+
# print("------------------------------------------------------")
|
168 |
+
# # list(completed_concept_pipes)
|
169 |
+
# for model in completed_concept_pipes:
|
170 |
+
# print(f"{model}")
|
171 |
+
# }}}---
|
172 |
|
173 |
#@title 5. Optionally Test without Gradio
|
174 |
|
175 |
+
# NOT NEEDED FOR DEPLOYMENT ---{{{
|
176 |
+
# model = "" #@param {type: "string"}
|
177 |
+
# prompt = "" #@param {type:"string"}
|
178 |
|
179 |
+
# if prompt and model:
|
180 |
+
# if model not in completed_concept_pipes:
|
181 |
+
# raise ValueError("Invalid Model Name")
|
182 |
|
183 |
+
# model_token = model.split("/")[1]
|
184 |
+
# prompt = f"{prompt} in the style of <{model_token}>"
|
185 |
|
186 |
+
# if model == "sd-concepts-library/ahx-model-5":
|
187 |
+
# prompt = f"{prompt} in the style of "
|
188 |
|
189 |
+
# num_samples = 1
|
190 |
+
# num_rows = 1
|
191 |
|
192 |
+
# all_images = []
|
193 |
+
# pipe = completed_concept_pipes[model]
|
194 |
|
195 |
+
# for _ in range(num_rows):
|
196 |
+
# images = pipe(prompt, num_images_per_prompt=num_samples, height=512, width=512, num_inference_steps=30, guidance_scale=7.5).images
|
197 |
+
# all_images.extend(images)
|
198 |
|
199 |
+
# grid = image_grid(all_images, num_samples, num_rows)
|
200 |
+
# grid
|
201 |
+
# }}}---
|
202 |
|
203 |
|
204 |
#@title 6. Define Custom CSS for Gradio
|