tombetthauser commited on
Commit
0d385d9
Β·
1 Parent(s): f341890

Add prints to load_learned_embed_in_clip func

Browse files
Files changed (1) hide show
  1. app.py +11 -0
app.py CHANGED
@@ -95,32 +95,43 @@ pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4",
95
  # pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=True, revision="fp16", torch_dtype=torch.float16).to("cuda")
96
 
97
  def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, token=None):
 
98
  loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
99
 
100
  # separate token and the embeds
101
  trained_token = list(loaded_learned_embeds.keys())[0]
 
102
  embeds = loaded_learned_embeds[trained_token]
 
103
 
104
  # cast to dtype of text_encoder
105
  dtype = text_encoder.get_input_embeddings().weight.dtype
 
106
 
107
  # add the token in tokenizer
108
  token = token if token is not None else trained_token
 
109
  num_added_tokens = tokenizer.add_tokens(token)
 
110
  i = 1
111
  while(num_added_tokens == 0):
112
  print(f"The tokenizer already contains the token {token}.")
113
  token = f"{token[:-1]}-{i}>"
114
  print(f"Attempting to add the token {token}.")
115
  num_added_tokens = tokenizer.add_tokens(token)
 
116
  i+=1
 
117
 
118
  # resize the token embeddings
119
  text_encoder.resize_token_embeddings(len(tokenizer))
 
120
 
121
  # get the id for the token and assign the embeds
122
  token_id = tokenizer.convert_tokens_to_ids(token)
 
123
  text_encoder.get_input_embeddings().weight.data[token_id] = embeds
 
124
  return token
125
 
126
 
 
95
  # pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=True, revision="fp16", torch_dtype=torch.float16).to("cuda")
96
 
97
  def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, token=None):
98
+ print("1 <****************")
99
  loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
100
 
101
  # separate token and the embeds
102
  trained_token = list(loaded_learned_embeds.keys())[0]
103
+ print("2 <****************")
104
  embeds = loaded_learned_embeds[trained_token]
105
+ print("3 <****************")
106
 
107
  # cast to dtype of text_encoder
108
  dtype = text_encoder.get_input_embeddings().weight.dtype
109
+ print("4 <****************")
110
 
111
  # add the token in tokenizer
112
  token = token if token is not None else trained_token
113
+ print("5 <****************")
114
  num_added_tokens = tokenizer.add_tokens(token)
115
+ print("6 <****************")
116
  i = 1
117
  while(num_added_tokens == 0):
118
  print(f"The tokenizer already contains the token {token}.")
119
  token = f"{token[:-1]}-{i}>"
120
  print(f"Attempting to add the token {token}.")
121
  num_added_tokens = tokenizer.add_tokens(token)
122
+ print("7 <****************")
123
  i+=1
124
+ print("8 <****************")
125
 
126
  # resize the token embeddings
127
  text_encoder.resize_token_embeddings(len(tokenizer))
128
+ print("9 <****************")
129
 
130
  # get the id for the token and assign the embeds
131
  token_id = tokenizer.convert_tokens_to_ids(token)
132
+ print("10 <****************")
133
  text_encoder.get_input_embeddings().weight.data[token_id] = embeds
134
+ print("11 <****************")
135
  return token
136
 
137