Spaces:
Runtime error
Runtime error
File size: 10,349 Bytes
880a175 3185c51 cd7f3ee 6cf80c2 880a175 6cf80c2 880a175 aa5f18f 880a175 aa5f18f 880a175 aa5f18f 880a175 7e14edd 880a175 7e14edd 880a175 6cf80c2 880a175 aa5f18f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
# !pip install -qq diffusers==0.11.1 transformers ftfy accelerate
#@title Import required libraries
import os
import torch
import PIL
from PIL import Image
from diffusers import StableDiffusionPipeline
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
#@title Login to the Hugging Face Hub
from huggingface_hub import notebook_login
# hf_token_write = "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" # π€«
hf_token_write = os.environ['api_key']
# notebook_login()
def image_grid(imgs, rows, cols):
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
## Run Stable Diffusion with pre-trained Learned Concepts
pretrained_model_name_or_path = "stabilityai/stable-diffusion-2"
from IPython.display import Markdown
from huggingface_hub import hf_hub_download
#@title Concept Pipe Function
import subprocess
def create_concept_pipe(model_name):
# 1. Load Concept
repo_id_embeds = f"sd-concepts-library/{model_name}" # <-------- CONCEPT NAME
embeds_url = "" #Add the URL or path to a learned_embeds.bin file in case you have one
placeholder_token_string = "" #Add what is the token string in case you are uploading your own embed
downloaded_embedding_folder = "./downloaded_embedding"
if not os.path.exists(downloaded_embedding_folder):
os.mkdir(downloaded_embedding_folder)
if(not embeds_url):
embeds_path = hf_hub_download(repo_id=repo_id_embeds, filename="learned_embeds.bin")
token_path = hf_hub_download(repo_id=repo_id_embeds, filename="token_identifier.txt")
# FOR DEPLOYMENT: address file system use
#!cp downloaded_embedding_folder
#!cp downloaded_embedding_folder
# UNDER CONSTRUCTION ---{{{
subprocess.call([f"cp {embeds_path} {downloaded_embedding_folder}"])
subprocess.call([f"cp {token_path} {downloaded_embedding_folder}"])
# }}}---
with open(f'{downloaded_embedding_folder}/token_identifier.txt', 'r') as file:
placeholder_token_string = file.read()
else:
# FOR DEPLOYMENT: address file system use
#!wget -q -O $downloaded_embedding_folder/learned_embeds.bin $embeds_url
# UNDER CONSTRUCTION ---{{{
subprocess.call([f"wget -q -O {downloaded_embedding_folder}/learned_embeds.bin {embeds_url}"])
# }}}---
learned_embeds_path = f"{downloaded_embedding_folder}/learned_embeds.bin"
# display (Markdown("## The placeholder token for your concept is `%s`"%(placeholder_token_string)))
# 2. Set up the Tokenizer and the Text Encoder
tokenizer = CLIPTokenizer.from_pretrained(
pretrained_model_name_or_path,
subfolder="tokenizer",
)
text_encoder = CLIPTextModel.from_pretrained(
pretrained_model_name_or_path, subfolder="text_encoder", torch_dtype=torch.float16
)
# 3. Load the newly learned embeddings into CLIP
def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, token=None):
loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
# separate token and the embeds
trained_token = list(loaded_learned_embeds.keys())[0]
embeds = loaded_learned_embeds[trained_token]
# cast to dtype of text_encoder
dtype = text_encoder.get_input_embeddings().weight.dtype
embeds.to(dtype)
# add the token in tokenizer
token = token if token is not None else trained_token
num_added_tokens = tokenizer.add_tokens(token)
if num_added_tokens == 0:
raise ValueError(f"The tokenizer already contains the token {token}. Please pass a different `token` that is not already in the tokenizer.")
# resize the token embeddings
text_encoder.resize_token_embeddings(len(tokenizer))
# get the id for the token and assign the embeds
token_id = tokenizer.convert_tokens_to_ids(token)
text_encoder.get_input_embeddings().weight.data[token_id] = embeds
load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer)
# 4. Load the Stable Diffusion pipeline
pipe = StableDiffusionPipeline.from_pretrained(
pretrained_model_name_or_path,
torch_dtype=torch.float16,
text_encoder=text_encoder,
tokenizer=tokenizer,
).to("cuda")
return pipe
# Load All Concept Pipes
models_to_load = [
# "ahx-model-3",
# "ahx-model-5",
# "ahx-model-6",
# "ahx-model-7",
# "ahx-model-8",
# "ahx-model-9",
# "ahx-model-10",
"ahx-model-11",
"ahx-model-12",
# "ahx-model-13",
# "ahx-model-14",
]
completed_concept_pipes = {}
for model in models_to_load:
completed_concept_pipes[model] = create_concept_pipe(model)
# Test Concept Pipes
#@title Create Image Function
import random
def random_seed():
return random.randint(0, 18446744073709551615)
def create_image(concept="", prompt="", height=768, width=768, steps=30, guidance=7.5, seed=None):
complete_prompt = f"{prompt} in the style of \u003C{concept}>"
if seed is None:
seed = random_seed()
num_samples = 1
num_rows = 1
all_images = []
for _ in range(num_rows):
pipe = completed_concept_pipes[concept]
generator = torch.Generator(device="cuda").manual_seed(seed)
images = pipe(complete_prompt, num_images_per_prompt=num_samples, num_inference_steps=steps, guidance_scale=guidance, height=int((height // 8) * 8), width=int((width // 8) * 8), generator=generator).images
# images = pipe(complete_prompt, num_images_per_prompt=num_samples, height=height, width=width, num_inference_steps=30, guidance_scale=7.5).images
all_images.extend(images)
grid = image_grid(all_images, num_samples, num_rows)
return {
"complete_prompt": complete_prompt,
"seed": seed,
"guidance": guidance,
"inf_steps": steps,
"grid": grid,
}
#@title Test Text-to-Image Functionality
concept = "ahx-model-11" #@param {type:"string"}
prompt = "forgotten" #@param {type:"string"}
height = 525 #@param {type:"integer"}
width = 1700 #@param {type:"integer"}
# max square --> 983 x 983 --> 966,289 px^2
# default good square --> 768 x 768
guidance = 7.5 #@param {type:"number"}
steps = 30 #@param {type:"integer"}
seed = None #@param {type:"integer"}
image_obj = create_image(concept, prompt, steps=steps, guidance=guidance, height=height, width=width, seed=seed)
print(image_obj)
image_obj["grid"]
# Create Gradio Interface
# !pip install gradio
import gradio as gr
#@title Gradio Concept Loader
DROPDOWNS = {}
# images = pipe(complete_prompt, num_images_per_prompt=num_samples, num_inference_steps=steps, guidance_scale=guidance, height=int((height // 8) * 8), width=int((width // 8) * 8), generator=generator).images
for model in models_to_load:
# token = model.split("/")[1]
DROPDOWNS[model] = f" in the style of <{model}>"
if "sd-concepts-library/ahx-model-5" in DROPDOWNS:
DROPDOWNS["sd-concepts-library/ahx-model-5"] = f"{prompt} in the style of <ahx-model-4>"
def image_prompt(prompt, dropdown, guidance, steps, seed, height, width):
# def image_prompt(prompt, dropdown, seed):
prompt = prompt + DROPDOWNS[dropdown]
pipe = completed_concept_pipes[dropdown]
generator = torch.Generator(device="cuda").manual_seed(int(seed))
return (
pipe(prompt=prompt, guidance_scale=guidance, num_inference_steps=steps, generator=generator, height=int((height // 8) * 8), width=int((width // 8) * 8)).images[0],
f"prompt = '{prompt}'\nseed = {int(seed)}\nguidance_scale = {guidance}\ninference steps = {steps}\nheight = {int((height // 8) * 8)}\nwidth = {int((width // 8) * 8)}"
)
# images = pipe(complete_prompt, num_images_per_prompt=num_samples, num_inference_steps=steps, guidance_scale=guidance, height=int((height // 8) * 8), width=int((width // 8) * 8), generator=generator).images
# return pipe(prompt=prompt, height=768, width=768, generator=generator).images[0]
def default_guidance():
return 7.5
def default_steps():
return 30
def default_pixel():
return 768
def random_seed():
return random.randint(0, 99999999999999) # <-- this is a random gradio limit, the seed range seems to actually be 0-18446744073709551615
# with gr.Blocks(css=gradio_css) as demo:
with gr.Blocks(css=".gradio-container {max-width: 650px}") as demo:
dropdown = gr.Dropdown(list(DROPDOWNS), label="choose style...")
gr.Markdown("<u>styles</u>: check out examples of these at https://www.astronaut.horse/collaborations")
prompt = gr.Textbox(label="image prompt...", elem_id="input-text")
seed = gr.Slider(0, 99999999999999, label="seed", dtype=int, value=random_seed, interactive=True, step=1)
with gr.Row():
with gr.Column():
guidance = gr.Slider(0, 10, label="guidance", dtype=float, value=default_guidance, step=0.1, interactive=True)
with gr.Column():
steps = gr.Slider(1, 100, label="inference steps", dtype=int, value=default_steps, step=1, interactive=True)
with gr.Row():
with gr.Column():
height = gr.Slider(50, 3500, label="height", dtype=int, value=default_pixel, step=1, interactive=True)
with gr.Column():
width = gr.Slider(50, 3500, label="width", dtype=int, value=default_pixel, step=1, interactive=True)
gr.Markdown("<u>heads-up</u>: height multiplied by width should not exceed about 195,000 or an error will occur so don't go too nuts")
# seed = gr.Slider(0, 18446744073709551615, label="seed", dtype=int, value=random_seed, interactive=True, step=1)
# seed = gr.Slider(0, 18446744073709550591, label="seed", dtype=int, value=random_seed, interactive=True, step=1)
# seed = gr.Slider(0, 18446744073709550, label="seed", dtype=int, value=random_seed, interactive=True, step=1)
# seed = gr.Slider(0, 85835103557872, label="seed", dtype=int, value=random_seed, interactive=True, step=1)
output = gr.Image(elem_id="output-image")
output_text = gr.Text(elem_id="output-text")
go_button = gr.Button("draw it!", elem_id="go-button")
go_button.click(fn=image_prompt, inputs=[prompt, dropdown, guidance, steps, seed, height, width], outputs=[output, output_text])
# go_button.click(fn=image_prompt, inputs=[prompt, dropdown, seed], outputs=output)
#@title Create Gradio Tab Interface
tabbed_interface = gr.TabbedInterface([demo], ["Concept Loader"])
tabbed_interface.launch() |