Spaces:
Runtime error
Runtime error
File size: 15,756 Bytes
a359b6d fa77a94 56c8a56 a359b6d cd7f3ee a359b6d 6cf80c2 a359b6d 6cf80c2 a359b6d 5e22611 a359b6d 5e22611 a359b6d 5e22611 a359b6d 4a237f8 a359b6d 5e22611 a359b6d aa33c7d a359b6d 97cc1f0 b65cd60 97cc1f0 e7d490b 9e2e3c5 e7d490b 9e2e3c5 e7d490b 97cc1f0 877dee8 97cc1f0 c3062cb 877dee8 97cc1f0 b65cd60 97cc1f0 b65cd60 75d45a1 97cc1f0 9e2e3c5 5cb92bb e7d490b 97cc1f0 5e22611 877dee8 a359b6d 877dee8 a359b6d 877dee8 a359b6d 877dee8 a359b6d 877dee8 6b22177 877dee8 d370d46 c3062cb d370d46 c3062cb 877dee8 aa33c7d 901b267 877dee8 6b22177 877dee8 a359b6d 877dee8 a359b6d 7e14edd a359b6d 877dee8 5e22611 a359b6d 6b22177 77195a0 6b22177 a359b6d 5e22611 97cc1f0 a359b6d 6cf80c2 a359b6d 97cc1f0 877dee8 97cc1f0 a359b6d 877dee8 a359b6d 6b22177 77195a0 6b22177 3708c86 6b22177 901b267 6b22177 97cc1f0 901b267 871d7f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
#@title Prepare the Concepts Library to be used
import requests
import os
import gradio as gr
import wget
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline
from huggingface_hub import HfApi
from transformers import CLIPTextModel, CLIPTokenizer
import html
community_icon_html = ""
loading_icon_html = ""
share_js = ""
api = HfApi()
models_list = api.list_models(author="sd-concepts-library", sort="likes", direction=-1)
models = []
my_token = os.environ['api_key']
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", revision="fp16", torch_dtype=torch.float16, use_auth_token=my_token).to("cuda")
def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, token=None):
loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
_old_token = token
# separate token and the embeds
trained_token = list(loaded_learned_embeds.keys())[0]
embeds = loaded_learned_embeds[trained_token]
# cast to dtype of text_encoder
dtype = text_encoder.get_input_embeddings().weight.dtype
# add the token in tokenizer
token = token if token is not None else trained_token
num_added_tokens = tokenizer.add_tokens(token)
i = 1
while(num_added_tokens == 0):
token = f"{token[:-1]}-{i}>"
num_added_tokens = tokenizer.add_tokens(token)
i+=1
# resize the token embeddings
text_encoder.resize_token_embeddings(len(tokenizer))
# get the id for the token and assign the embeds
token_id = tokenizer.convert_tokens_to_ids(token)
text_encoder.get_input_embeddings().weight.data[token_id] = embeds
return token
ahx_model_list = [model for model in models_list if "ahx" in model.modelId]
ahx_dropdown_list = [model for model in models_list if "ahx-model" in model.modelId]
for model in ahx_model_list:
model_content = {}
model_id = model.modelId
model_content["id"] = model_id
embeds_url = f"https://huggingface.co/{model_id}/resolve/main/learned_embeds.bin"
os.makedirs(model_id,exist_ok = True)
if not os.path.exists(f"{model_id}/learned_embeds.bin"):
try:
wget.download(embeds_url, out=model_id)
except:
continue
token_identifier = f"https://huggingface.co/{model_id}/raw/main/token_identifier.txt"
response = requests.get(token_identifier)
token_name = response.text
concept_type = f"https://huggingface.co/{model_id}/raw/main/type_of_concept.txt"
response = requests.get(concept_type)
concept_name = response.text
model_content["concept_type"] = concept_name
images = []
for i in range(4):
url = f"https://huggingface.co/{model_id}/resolve/main/concept_images/{i}.jpeg"
image_download = requests.get(url)
url_code = image_download.status_code
if(url_code == 200):
file = open(f"{model_id}/{i}.jpeg", "wb") ## Creates the file for image
file.write(image_download.content) ## Saves file content
file.close()
images.append(f"{model_id}/{i}.jpeg")
model_content["images"] = images
#if token cannot be loaded, skip it
try:
learned_token = load_learned_embed_in_clip(f"{model_id}/learned_embeds.bin", pipe.text_encoder, pipe.tokenizer, token_name)
except:
continue
model_content["token"] = learned_token
models.append(model_content)
models.append(model_content)
# -----------------------------------------------------------------------------------------------
#@title Dropdown Prompt Tab
model_tags = [model.modelId.split("/")[1] for model in ahx_model_list]
model_tags.sort()
import random
#@title Gradio Concept Loader
DROPDOWNS = {}
for model in model_tags:
if model != "ahx-model-1" and model != "ahx-model-2":
DROPDOWNS[model] = f" in the style of <{model}>"
# def image_prompt(prompt, dropdown, guidance, steps, seed, height, width):
def image_prompt(prompt, guidance, steps, seed, height, width):
# prompt = prompt + DROPDOWNS[dropdown]
square_pixels = height * width
if square_pixels > 640000:
height = 640000 // width
generator = torch.Generator(device="cuda").manual_seed(int(seed))
return (
pipe(prompt=prompt, guidance_scale=guidance, num_inference_steps=steps, generator=generator, height=int((height // 8) * 8), width=int((width // 8) * 8)).images[0],
f"prompt = '{prompt}'\nseed = {int(seed)}\nguidance_scale = {guidance}\ninference steps = {steps}\nheight = {int((height // 8) * 8)}\nwidth = {int((width // 8) * 8)}"
)
def default_guidance():
return 7.5
def default_steps():
return 30
def default_pixel():
return 768
def random_seed():
return random.randint(0, 99999999999999) # <-- this is a random gradio limit, the seed range seems to actually be 0-18446744073709551615
def get_models_text():
# make markdown text for available models...
markdown_model_tags = [f"<{model}>" for model in model_tags if model != "ahx-model-1" and model != "ahx-model-2"]
markdown_model_text = "\n".join(markdown_model_tags)
# make markdown text for available betas...
markdown_betas_tags = [f"<{model}>" for model in model_tags if "beta" in model]
markdown_betas_text = "\n".join(markdown_model_tags)
return f"## Available Artist Models / Concepts:\n" + markdown_model_text + "\n\n## Available Beta Models / Concepts:\n" + markdown_betas_text
with gr.Blocks(css=".gradio-container {max-width: 650px}") as dropdown_tab:
gr.Markdown('''
# π§βπ Advanced Concept Loader
This tool allows you to run your own text prompts into fine-tuned artist concepts with individual parameter controls. Text prompts need to manually include artist concept / model tokens, see the examples below. The seed controls the static starting.
<br>
<br>
The images you generate here are not recorded unless you choose to share them. Please share any cool images / prompts on the community tab here or our discord server!
<br>
<br>
<a href="http://www.astronaut.horse">http://www.astronaut.horse</a>
''')
with gr.Row():
prompt = gr.Textbox(label="image prompt...", elem_id="input-text")
with gr.Row():
seed = gr.Slider(0, 99999999999999, label="seed", dtype=int, value=random_seed, interactive=True, step=1)
with gr.Row():
with gr.Column():
guidance = gr.Slider(0, 10, label="guidance", dtype=float, value=default_guidance, step=0.1, interactive=True)
with gr.Column():
steps = gr.Slider(1, 100, label="inference steps", dtype=int, value=default_steps, step=1, interactive=True)
with gr.Row():
with gr.Column():
width = gr.Slider(144, 4200, label="width", dtype=int, value=default_pixel, step=8, interactive=True)
with gr.Column():
height = gr.Slider(144, 4200, label="height", dtype=int, value=default_pixel, step=8, interactive=True)
gr.Markdown("<u>heads-up</u>: Height multiplied by width should not exceed about 645,000 or an error may occur. If an error occours refresh your browser tab or errors will continue. If you exceed this range the app will attempt to avoid an error by lowering your input height. We are actively seeking out ways to handle higher resolutions!")
go_button = gr.Button("generate image", elem_id="go-button")
output = gr.Image(elem_id="output-image")
output_text = gr.Text(elem_id="output-text")
# go_button.click(fn=image_prompt, inputs=[prompt, dropdown, guidance, steps, seed, height, width], outputs=[output, output_text])
go_button.click(fn=image_prompt, inputs=[prompt, guidance, steps, seed, height, width], outputs=[output, output_text])
# gr.Markdown('''
# ## Prompt Examples Using Artist Tokens:
# * "an alien in the style of \<ahx-model-12>"
# * "a painting in the style of \<ahx-model-11>"
# * "a landscape in the style of \<ahx-model-10> and \<ahx-model-14> "
# ## Valid Artist Tokens:
# ''')
gr.Markdown("For a complete list of usable models and beta concepts check out the dropdown selectors in the welcome and beta concepts tabs or the project's main website or our discord.\n\nhttp://www.astronaut.horse/concepts")
# -----------------------------------------------------------------------------------------------
#@title Dropdown Prompt Tab
model_tags = [model.modelId.split("/")[1] for model in ahx_model_list]
model_tags.sort()
import random
#@title Gradio Concept Loader
DROPDOWNS = {}
for model in model_tags:
if model != "ahx-model-1" and model != "ahx-model-2":
DROPDOWNS[model] = f" in the style of <{model}>"
# def image_prompt(prompt, dropdown, guidance, steps, seed, height, width):
def default_guidance():
return 7.5
def default_steps():
return 30
def default_pixel():
return 768
def random_seed():
return random.randint(0, 99999999999999) # <-- this is a random gradio limit, the seed range seems to actually be 0-18446744073709551615
def simple_image_prompt(prompt, dropdown):
seed = random_seed()
guidance = 7.5
height = 768
width = 768
steps = 30
prompt = prompt + DROPDOWNS[dropdown]
generator = torch.Generator(device="cuda").manual_seed(int(seed))
return (
pipe(prompt=prompt, guidance_scale=guidance, num_inference_steps=steps, generator=generator, height=int((height // 8) * 8), width=int((width // 8) * 8)).images[0],
f"prompt = '{prompt}'\nseed = {int(seed)}\nguidance_scale = {guidance}\ninference steps = {steps}\nheight = {int((height // 8) * 8)}\nwidth = {int((width // 8) * 8)}"
)
# ~~~ WELCOME TAB ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
with gr.Blocks(css=".gradio-container {max-width: 650px}") as new_welcome:
gr.Markdown('''
# π§βπ Astronaut Horse Concept Loader
This tool allows you to run your own text prompts into fine-tuned artist concepts from an ongoing series of Stable Diffusion collaborations with visual artists linked below. Select an artist's fine-tuned concept / model from the dropdown and enter any desired text prompt. You can check out example output images and project details on the project's webpage. Additionally you can play around with more controls in the Advanced Prompting tab.
<br>
<br>
The images you generate here are not recorded unless you choose to share them. Please share any cool images / prompts on the community tab here or our discord server!
<br>
<br>
<a href="http://www.astronaut.horse">http://www.astronaut.horse</a>
''')
dropdown = gr.Dropdown([dropdown for dropdown in list(DROPDOWNS) if 'ahx-model' in dropdown], label="choose style...")
dropdown = gr.Dropdown(['square', 'landscape', 'portrait'], label="image size / dimensions...")
dropdown = gr.Dropdown(['1 image', '2 images', '3 images', '4 images'], label="output image count...")
# with gr.Row():
prompt = gr.Textbox(label="image prompt...", elem_id="input-text")
go_button = gr.Button("generate image", elem_id="go-button")
output = gr.Image(elem_id="output-image")
output_text = gr.Text(elem_id="output-text")
go_button.click(fn=simple_image_prompt, inputs=[prompt, dropdown], outputs=[output, output_text])
# -----------------------------------------------------------------------------------------------
def infer(text, dropdown):
images_list = pipe(
[f"{text} in the style of <{dropdown}>"],
num_inference_steps=30,
guidance_scale=7.5
)
return images_list.images, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
css = ""
examples = []
# ~~~ UNUSED DEMO TAB ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
with gr.Blocks(css=css) as demo:
state = gr.Variable({
'selected': -1
})
state = {}
def update_state(i):
global checkbox_states
if(checkbox_states[i]):
checkbox_states[i] = False
state[i] = False
else:
state[i] = True
checkbox_states[i] = True
gr.Markdown('''
# π§βπ Astronaut Horse Concept Loader
This tool allows you to run your own text prompts into fine-tuned artist concepts from an ongoing series of Stable Diffusion collaborations with visual artists linked below. Select an artist's fine-tuned concept / model from the dropdown and enter any desired text prompt. You can check out example output images and project details on the project's webpage. Additionally if you can play around with more controls in the Advanced Prompting tab. Enjoy!
<a href="http://www.astronaut.horse">http://www.astronaut.horse</a>
''')
with gr.Row():
with gr.Column():
dropdown = gr.Dropdown(list(DROPDOWNS), label="choose style...")
text = gr.Textbox(
label="Enter your prompt", placeholder="Enter your prompt", show_label=False, max_lines=1, elem_id="prompt_input"
)
btn = gr.Button("generate image",elem_id="run_btn")
infer_outputs = gr.Gallery(show_label=False, elem_id="generated-gallery").style(grid=[1])
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, visible=False)
loading_icon = gr.HTML(loading_icon_html, visible=False)
checkbox_states = {}
inputs = [text, dropdown]
btn.click(
infer,
inputs=inputs,
outputs=[infer_outputs, community_icon, loading_icon]
)
# -----------------------------------------------------------------------------------------------
# ~~~ BETA TAB ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
with gr.Blocks() as beta:
gr.Markdown('''
# π§βπ Beta Concept Loader
This tool allows you to test out newly trained beta concepts trained by artists. These are experimental and may be removed if they are problematic or uninteresting. If they end up successful though they'll be renamed and moved into the primary prompting drop-down.
To add to this artists can now freely train new models / concepts using the link below. This uses free access to Google's GPUs but will require a password / key that you can get from our discord. After a new concept / model is trained it will be automatically added to this tab after ~24 hours!
<a href="https://colab.research.google.com/drive/1FhOpcEjHT7EN53Zv9MFLQTytZp11wjqg#scrollTo=hzUluHT-I42O">https://colab.research.google.com/astronaut-horse-training-tool</a>
''')
dropdown = gr.Dropdown([dropdown for dropdown in list(DROPDOWNS) if 'ahx-beta' in dropdown], label="choose style...")
# with gr.Row():
prompt = gr.Textbox(label="image prompt...", elem_id="input-text")
go_button = gr.Button("generate image", elem_id="go-button")
output = gr.Image(elem_id="output-image")
output_text = gr.Text(elem_id="output-text")
go_button.click(fn=simple_image_prompt, inputs=[prompt, dropdown], outputs=[output, output_text])
# -----------------------------------------------------------------------------------------------
# ~~~ NOISE STEPS TAB ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
with gr.Blocks() as noise_steps:
gr.Markdown('''
# π§βπ Noise Steps Loader
This tool desn't exist yet!
''')
dropdown = gr.Dropdown([dropdown for dropdown in list(DROPDOWNS) if 'ahx-beta' in dropdown], label="choose style...")
# with gr.Row():
prompt = gr.Textbox(label="image prompt...", elem_id="input-text")
go_button = gr.Button("generate image", elem_id="go-button")
output = gr.Image(elem_id="output-image")
output_text = gr.Text(elem_id="output-text")
go_button.click(fn=simple_image_prompt, inputs=[prompt, dropdown], outputs=[output, output_text])
# -----------------------------------------------------------------------------------------------
tabbed_interface = gr.TabbedInterface([new_welcome, dropdown_tab, beta, noise_steps], ["Welcome!", "Advanced Prompting", "Beta Concepts", "Noise Steps"])
tabbed_interface.launch() |