Spaces:
Runtime error
Runtime error
File size: 8,098 Bytes
937f590 7e14edd 937f590 7e14edd 93dd707 cd7f3ee 93dd707 7e14edd 937f590 7e14edd 937f590 7e14edd c91c54c 7e14edd 7713986 7e14edd 937f590 5c0e5df 937f590 d5b9aaa b991d0a 4f8e7f5 04448f6 7e14edd c91c54c d7040df c91c54c 36fb421 7e14edd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
#@title 1. General Setup
!pip install -qq diffusers==0.11.1 transformers ftfy accelerate
!pip install -Uq diffusers transformers
!pip install -Uq gradio
!pip install -Uq accelerate
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from accelerate import init_empty_weights
import gradio
import torch
import os
# FOR DEPLOYMENT: uncomment these and delete the notebook_login() below
# api_key = os.environ['api_key']
# my_token = api_key
from huggingface_hub import notebook_login
notebook_login()
import PIL
from PIL import Image
def image_grid(imgs, rows, cols):
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
pretrained_model_name_or_path = "stabilityai/stable-diffusion-2"
from IPython.display import Markdown
from huggingface_hub import hf_hub_download
#@title 2. Tell it What Concepts to Load
models_to_load = [
"ahx-model-3",
"ahx-model-5",
"ahx-model-6",
"ahx-model-7",
"ahx-model-8",
"ahx-model-9",
"ahx-model-10",
"ahx-model-11",
]
models_to_load = [f"sd-concepts-library/{model}" for model in models_to_load]
completed_concept_pipes = {}
#@title 3. Load the Concepts as Distinct Pipes
for repo_id_embeds in models_to_load:
print(f"loading {repo_id_embeds}")
print("----------------------")
# repo_id_embeds = "sd-concepts-library/ahx-model-3"
embeds_url = "" #Add the URL or path to a learned_embeds.bin file in case you have one
placeholder_token_string = "" #Add what is the token string in case you are uploading your own embed
downloaded_embedding_folder = "./downloaded_embedding"
if not os.path.exists(downloaded_embedding_folder):
os.mkdir(downloaded_embedding_folder)
if(not embeds_url):
embeds_path = hf_hub_download(repo_id=repo_id_embeds, filename="learned_embeds.bin")
token_path = hf_hub_download(repo_id=repo_id_embeds, filename="token_identifier.txt")
!cp
downloaded_embedding_folder
!cp
downloaded_embedding_folder
with open(f'{downloaded_embedding_folder}/token_identifier.txt', 'r') as file:
placeholder_token_string = file.read()
else:
!wget -q -O $downloaded_embedding_folder/learned_embeds.bin $embeds_url
learned_embeds_path = f"{downloaded_embedding_folder}/learned_embeds.bin"
# ----
tokenizer = CLIPTokenizer.from_pretrained(
pretrained_model_name_or_path,
subfolder="tokenizer",
)
text_encoder = CLIPTextModel.from_pretrained(
pretrained_model_name_or_path, subfolder="text_encoder", torch_dtype=torch.float16
)
# ----
def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, token=None):
loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
# separate token and the embeds
trained_token = list(loaded_learned_embeds.keys())[0]
embeds = loaded_learned_embeds[trained_token]
# cast to dtype of text_encoder
dtype = text_encoder.get_input_embeddings().weight.dtype
embeds.to(dtype)
# add the token in tokenizer
token = token if token is not None else trained_token
num_added_tokens = tokenizer.add_tokens(token)
if num_added_tokens == 0:
raise ValueError(f"The tokenizer already contains the token {token}. Please pass a different `token` that is not already in the tokenizer.")
# resize the token embeddings
text_encoder.resize_token_embeddings(len(tokenizer))
# get the id for the token and assign the embeds
token_id = tokenizer.convert_tokens_to_ids(token)
text_encoder.get_input_embeddings().weight.data[token_id] = embeds
load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer)
# FOR DEPLOYMENT: add use_auth_token=my_token to pipe keyword args
# ie --> pipe = pipeline.from_pretrained("CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16, use_auth_token=my_token).to("cuda")
pipe = StableDiffusionPipeline.from_pretrained(
pretrained_model_name_or_path,
torch_dtype=torch.float16,
text_encoder=text_encoder,
tokenizer=tokenizer,
).to("cuda")
completed_concept_pipes[repo_id_embeds] = pipe
print("--> complete !")
print("----------------------")
#@title 4. Print Available Concept Strings
print("AVAILABLE CONCEPTS TO SELECT FROM")
print("copy one and paste below under 'model'")
print("------------------------------------------------------")
# list(completed_concept_pipes)
for model in completed_concept_pipes:
print(f"{model}")
#@title 5. Optionally Test without Gradio
model = "" #@param {type: "string"}
prompt = "" #@param {type:"string"}
if prompt and model:
if model not in completed_concept_pipes:
raise ValueError("Invalid Model Name")
model_token = model.split("/")[1]
prompt = f"{prompt} in the style of <{model_token}>"
if model == "sd-concepts-library/ahx-model-5":
prompt = f"{prompt} in the style of "
num_samples = 1
num_rows = 1
all_images = []
pipe = completed_concept_pipes[model]
for _ in range(num_rows):
images = pipe(prompt, num_images_per_prompt=num_samples, height=512, width=512, num_inference_steps=30, guidance_scale=7.5).images
all_images.extend(images)
grid = image_grid(all_images, num_samples, num_rows)
grid
#@title 6. Define Custom CSS for Gradio
use_custom_css = True
gradio_css = """
#output-image {
border: 1px solid black;
background-color: white;
width: 500px;
display: block;
margin-left: auto;
margin-right: auto;
}
"""
gradio_css_alternative = """
#go-button {
background-color: white;
border-radius: 0;
border: none;
font-family: serif;
background-image: none;
font-weight: 100;
width: fit-content;
display: block;
margin-left: auto;
margin-right: auto;
text-decoration: underline;
box-shadow: none;
color: blue;
}
.rounded-lg {
border: none;
}
.gr-box {
border-radius: 0;
border: 1px solid black;
}
.text-gray-500 {
color: black;
font-family: serif;
font-size: 15px;
}
.border-gray-200 {
border: 1px solid black;
}
.bg-gray-200 {
background-color: white;
--tw-bg-opacity: 0;
}
footer {
display: none;
}
footer {
opacity: 0;
}
#output-image {
border: 1px solid black;
background-color: white;
width: 500px;
display: block;
margin-left: auto;
margin-right: auto;
}
.absolute {
display: none;
}
#input-text {
width: 500px;
display: block;
margin-left: auto;
margin-right: auto;
padding: 0 0 0 0;
}
.py-6 {
padding-top: 0;
padding-bottom: 0;
}
.px-4 {
padding-left: 0;
padding-right: 0;
}
.rounded-lg {
border-radius: 0;
}
.gr-padded {
padding: 0 0;
margin-bottom: 12.5px;
}
.col > *, .col > .gr-form > * {
width: 500px;
margin-left: auto;
margin-right: auto;
}
"""
#@title 7. Build and Launch the Gradio Interface
DROPDOWNS = {}
for model in models_to_load:
token = model.split("/")[1]
DROPDOWNS[model] = f" in the style of <{token}>"
if "sd-concepts-library/ahx-model-5" in DROPDOWNS:
DROPDOWNS["sd-concepts-library/ahx-model-5"] = f"{prompt} in the style of "
def image_prompt(prompt, dropdown):
prompt = prompt + DROPDOWNS[dropdown]
pipe = completed_concept_pipes[dropdown]
return pipe(prompt=prompt, height=512, width=512).images[0]
with gradio.Blocks(css=gradio_css if use_custom_css else "") as demo:
dropdown = gradio.Dropdown(list(DROPDOWNS), label="choose style...")
prompt = gradio.Textbox(label="image prompt...", elem_id="input-text")
output = gradio.Image(elem_id="output-image")
go_button = gradio.Button("draw it!", elem_id="go-button")
go_button.click(fn=image_prompt, inputs=[prompt, dropdown], outputs=output)
demo.launch(share=True)
|