Spaces:
Runtime error
Runtime error
| from dataclasses import dataclass | |
| from enum import Enum | |
| class Task: | |
| benchmark: str | |
| metric: str | |
| col_name: str | |
| type: str | |
| baseline: float = 0.0 | |
| # Select your tasks here | |
| # --------------------------------------------------- | |
| class Tasks(Enum): | |
| # task_key in the json file, metric_key in the json file, name to display in the leaderboard | |
| # task2 = Task("belebele_pol_Latn", "acc,none", "belebele_pol_Latn", "multiple_choice", 0.279) | |
| task3 = Task("polemo2_in", "exact_match,score-first", "polemo2-in_g", "generate_until", 0.416) | |
| task4 = Task("polemo2_in_multiple_choice", "acc,none", "polemo2-in_mc", "multiple_choice", 0.416) | |
| task5 = Task("polemo2_out", "exact_match,score-first", "polemo2-out_g", "generate_until", 0.368) | |
| task6 = Task("polemo2_out_multiple_choice", "acc,none", "polemo2-out_mc", "multiple_choice", 0.368) | |
| task7 = Task("polish_8tags_multiple_choice", "acc,none", "8tags_mc", "multiple_choice", 0.143) | |
| task8 = Task("polish_8tags_regex", "exact_match,score-first", "8tags_g", "generate_until", 0.143) | |
| task9a = Task("polish_belebele_mc", "acc,none", "belebele_mc", "multiple_choice", 0.279) | |
| task9 = Task("polish_belebele_regex", "exact_match,score-first", "belebele_g", "generate_until", 0.279) | |
| task10 = Task("polish_dyk_multiple_choice", "f1,none", "dyk_mc", "multiple_choice", 0.289) | |
| task11 = Task("polish_dyk_regex", "f1,score-first", "dyk_g", "generate_until", 0.289) | |
| task12 = Task("polish_ppc_multiple_choice", "acc,none", "ppc_mc", "multiple_choice", 0.419) | |
| task13 = Task("polish_ppc_regex", "exact_match,score-first", "ppc_g", "generate_until", 0.419) | |
| task14 = Task("polish_psc_multiple_choice", "f1,none", "psc_mc", "multiple_choice", 0.466) | |
| # task15 = Task("polish_psc_regex", "f1,score-first", "psc_g", "generate_until", 0.466) # disabled until recalculation | |
| task16 = Task("polish_cbd_multiple_choice", "f1,none", "cbd_mc", "multiple_choice", 0.149) | |
| task17 = Task("polish_cbd_regex", "f1,score-first", "cbd_g", "generate_until", 0.149) | |
| task18 = Task("polish_klej_ner_multiple_choice", "acc,none", "klej_ner_mc", "multiple_choice", 0.343) | |
| task19 = Task("polish_klej_ner_regex", "exact_match,score-first", "klej_ner_g", "generate_until", 0.343) | |
| task21 = Task("polish_polqa_reranking_multiple_choice", "acc,none", "polqa_reranking_mc", "multiple_choice", 0.5335588952710677) # multiple_choice | |
| task22 = Task("polish_polqa_open_book", "levenshtein,none", "polqa_open_book_g", "generate_until", 0.0) # generate_until | |
| task23 = Task("polish_polqa_closed_book", "levenshtein,none", "polqa_closed_book_g", "generate_until", 0.0) # generate_until | |
| task20 = Task("polish_poleval2018_task3_test_10k", "word_perplexity,none", "poleval2018_task3_test_10k", "other") | |
| NUM_FEWSHOT = 0 # Change with your few shot | |
| # --------------------------------------------------- | |
| # Your leaderboard name | |
| TITLE = """ | |
| <div style="display: flex; flex-wrap: wrap; justify-content: space-around;"> | |
| <img src="https://speakleash.org/wp-content/uploads/2023/09/SpeakLeash_logo.svg"> | |
| <div> | |
| <h1 align="center" id="space-title">Open PL LLM Leaderboard (0-shot and 5-shot)</h1> | |
| <h2 align="center" id="space-subtitle">Leaderboard was created as part of an open-science project SpeakLeash.org</h2> | |
| </div> | |
| </div> | |
| """ | |
| # What does your leaderboard evaluate? | |
| INTRODUCTION_TEXT = """ | |
| The leaderboard evaluates language models on a set of Polish tasks. The tasks are designed to test the models' ability to understand and generate Polish text. The leaderboard is designed to be a benchmark for the Polish language model community, and to help researchers and practitioners understand the capabilities of different models. | |
| For now, models are tested without theirs templates. | |
| Almost every task has two versions: regex and multiple choice. | |
| * _g suffix means that a model needs to generate an answer (only suitable for instructions-based models) | |
| * _mc suffix means that a model is scored against every possible class (suitable also for base models) | |
| Average columns are normalized against scores by "Baseline (majority class)". | |
| We gratefully acknowledge Polish high-performance computing infrastructure PLGrid (HPC Centers: ACK Cyfronet AGH) for providing computer facilities and support within computational grant no. PLG/2024/016951. | |
| """ | |
| # Which evaluations are you running? how can people reproduce what you have? | |
| LLM_BENCHMARKS_TEXT = f""" | |
| ## Do you want to add your model to the leaderboard? | |
| Contact with me: [LinkedIn](https://www.linkedin.com/in/wrobelkrzysztof/) | |
| or join our [Discord SpeakLeash](https://discord.gg/3G9DVM39) | |
| ## TODO | |
| * fix long model names | |
| * add inference time | |
| * add more tasks | |
| * use model templates | |
| * fix scrolling on Firefox | |
| ## Tasks | |
| | Task | Dataset | Metric | Type | | |
| |---------------------------------|---------------------------------------|-----------|-----------------| | |
| | polemo2_in | allegro/klej-polemo2-in | accuracy | generate_until | | |
| | polemo2_in_mc | allegro/klej-polemo2-in | accuracy | multiple_choice | | |
| | polemo2_out | allegro/klej-polemo2-out | accuracy | generate_until | | |
| | polemo2_out_mc | allegro/klej-polemo2-out | accuracy | multiple_choice | | |
| | 8tags_mc | sdadas/8tags | accuracy | multiple_choice | | |
| | 8tags_g | sdadas/8tags | accuracy | generate_until | | |
| | belebele_mc | facebook/belebele | accuracy | multiple_choice | | |
| | belebele_g | facebook/belebele | accuracy | generate_until | | |
| | dyk_mc | allegro/klej-dyk | binary F1 | multiple_choice | | |
| | dyk_g | allegro/klej-dyk | binary F1 | generate_until | | |
| | ppc_mc | sdadas/ppc | accuracy | multiple_choice | | |
| | ppc_g | sdadas/ppc | accuracy | generate_until | | |
| | psc_mc | allegro/klej-psc | binary F1 | multiple_choice | | |
| | psc_g | allegro/klej-psc | binary F1 | generate_until | | |
| | cbd_mc | ptaszynski/PolishCyberbullyingDataset | macro F1 | multiple_choice | | |
| | cbd_g | ptaszynski/PolishCyberbullyingDataset | macro F1 | generate_until | | |
| | klej_ner_mc | allegro/klej-nkjp-ner | accuracy | multiple_choice | | |
| | klej_ner_g | allegro/klej-nkjp-ner | accuracy | generate_until | | |
| | polqa_reranking_mc | ipipan/polqa | accuracy | multiple_choice | | |
| | polqa_open_book_g | ipipan/polqa | levenshtein | generate_until | | |
| | polqa_closed_book_g | ipipan/polqa | levenshtein | generate_until | | |
| | poleval2018_task3_test_10k | enelpol/poleval2018_task3_test_10k | word perplexity | other | | |
| ## Reproducibility | |
| To reproduce our results, you need to clone the repository: | |
| ``` | |
| git clone https://github.com/speakleash/lm-evaluation-harness.git -b polish | |
| cd lm-evaluation-harness | |
| pip install -e . | |
| ``` | |
| and run benchmark for 0-shot and 5-shot: | |
| ``` | |
| lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish --num_fewshot 0 --device cuda:0 --batch_size 16 --verbosity DEBUG --output_path results/ --log_samples | |
| lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish --num_fewshot 5 --device cuda:0 --batch_size 16 --verbosity DEBUG --output_path results/ --log_samples | |
| ``` | |
| ## List of Polish models | |
| * speakleash/Bielik-7B-Instruct-v0.1 | |
| * speakleash/Bielik-7B-v0.1 | |
| * Azurro/APT3-1B-Base | |
| * Azurro/APT3-1B-Instruct-v1 | |
| * Voicelab/trurl-2-7b | |
| * Voicelab/trurl-2-13b-academic | |
| * OPI-PG/Qra-1b | |
| * OPI-PG/Qra-7b | |
| * OPI-PG/Qra-13b | |
| * szymonrucinski/Curie-7B-v1 | |
| * sdadas/polish-gpt2-xl | |
| ### List of multilingual models | |
| * meta-llama/Llama-2-7b-chat-hf | |
| * mistralai/Mistral-7B-Instruct-v0.1 | |
| * HuggingFaceH4/zephyr-7b-beta | |
| * HuggingFaceH4/zephyr-7b-alpha | |
| * internlm/internlm2-chat-7b-sft | |
| * internlm/internlm2-chat-7b | |
| * mistralai/Mistral-7B-Instruct-v0.2 | |
| * teknium/OpenHermes-2.5-Mistral-7B | |
| * openchat/openchat-3.5-1210 | |
| * Nexusflow/Starling-LM-7B-beta | |
| * openchat/openchat-3.5-0106 | |
| * berkeley-nest/Starling-LM-7B-alpha | |
| * upstage/SOLAR-10.7B-Instruct-v1.0 | |
| * meta-llama/Llama-2-7b-hf | |
| * internlm/internlm2-base-7b | |
| * mistralai/Mistral-7B-v0.1 | |
| * internlm/internlm2-7b | |
| * alpindale/Mistral-7B-v0.2-hf | |
| * internlm/internlm2-1_8b | |
| """ | |
| EVALUATION_QUEUE_TEXT = """ | |
| ## Some good practices before submitting a model | |
| ### 1) Make sure you can load your model and tokenizer using AutoClasses: | |
| ```python | |
| from transformers import AutoConfig, AutoModel, AutoTokenizer | |
| config = AutoConfig.from_pretrained("your model name", revision=revision) | |
| model = AutoModel.from_pretrained("your model name", revision=revision) | |
| tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision) | |
| ``` | |
| If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded. | |
| Note: make sure your model is public! | |
| Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted! | |
| ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index) | |
| It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`! | |
| ### 3) Make sure your model has an open license! | |
| This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗 | |
| ### 4) Fill up your model card | |
| When we add extra information about models to the leaderboard, it will be automatically taken from the model card | |
| ## In case of model failure | |
| If your model is displayed in the `FAILED` category, its execution stopped. | |
| Make sure you have followed the above steps first. | |
| If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task). | |
| """ | |
| CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" | |
| CITATION_BUTTON_TEXT = r""" | |
| @misc{open-pl-llm-leaderboard, | |
| title = {Open PL LLM Leaderboard}, | |
| author = {Wróbel, Krzysztof and {SpeakLeash Team} and {Cyfronet Team}}, | |
| year = 2024, | |
| publisher = {Hugging Face}, | |
| howpublished = "\url{https://huggingface.co/spaces/speakleash/open_pl_llm_leaderboard}" | |
| } | |
| """ | |