Spaces:
Running
Running
File size: 1,648 Bytes
2ec2ebd fe9c201 12ff912 c3eb335 ba74c9e ad4c6dc fe9c201 2ec2ebd e18f8f6 5da5f21 ba74c9e 5da5f21 fe9c201 5da5f21 fe9c201 c3eb335 fe9c201 c3eb335 fe9c201 5da5f21 fe9c201 5da5f21 fe9c201 5da5f21 fe9c201 5da5f21 fe9c201 5da5f21 fe9c201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
from diffusion_lens import get_images
def generate_images(prompt):
print('calling diffusion lens')
all_images = [] # Initialize a list to store all images
for skip_layers in range(11, -1, -1):
images = get_images(prompt, skip_layers=skip_layers)
all_images.append(images[0]) # (images[0], f'layer_{12 - skip_layers}')) # Add the new image to the list
yield all_images # Yield the list of all images
with gr.Blocks() as demo:
text_input = gr.Textbox(label="Enter prompt")
gallery = gr.Gallery(label="Generated Images", columns=6, rows=2, object_fit="contain", height="auto")
# button = gr.Button("Diffusion Lens") # Create a button with the label 'Diffusion Lens'
# Bind the button click to the generate_images function
# button.click(fn=generate_images, inputs=[text_input, gr.State(all_images)], outputs=gallery)
text_input.submit(fn=generate_images, inputs=text_input, outputs=gallery)
demo.launch()
# def display_images(images):
# # Prepare images for display
# return [gr.Image(image) for image in images]
# def get_prompt(prompt):
# print('prompt:', prompt)
# return prompt
# def generate_images(prompt):
# print('calling diffusion lens')
# for skip_layers in range(23, 0, -1):
# images = get_images(prompt, skip_layers=skip_layers)
# yield images[0] # Yield each image as soon as it's ready
# # yield gr.Image(images[0]) # Yield each image as soon as it's ready
# with gr.Blocks() as demo:
# text_input = gr.Interface(fn=generate_images, inputs="text", outputs="image")
# demo.launch() |