File size: 1,140 Bytes
2ec2ebd
 
 
 
 
773453a
2ec2ebd
 
 
680fd14
2ec2ebd
 
 
 
 
680fd14
 
12ff912
 
680fd14
12ff912
 
 
262aa6b
 
680fd14
262aa6b
680fd14
262aa6b
680fd14
6bd54bd
2ec2ebd
e18f8f6
262aa6b
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gradio as gr
import sys
# sys.path.append("LaVi-Bridge/test")
# from llama2_unet_diffusion_lens import call_diffusion_lens
from diffusion_lens import get_images
import gradio as gr
import os
import subprocess



def display_images(images):
    # Prepare images for display
    return [gr.Image(image) for image in images]

def get_prompt(prompt):
    print('prompt:', prompt)
    return prompt



def generate_images(prompt):
    print('calling diffusion lens')
    images = []
    for skip_layers in range(1):  # loop from 0 to 23
        image = get_images(prompt, skip_layers=skip_layers)
        images.append(image)

    return images



with gr.Blocks() as demo:
    # gallery = gr.Gallery(
    #     label="Generated images", show_label=False, elem_id="gallery",
    #     columns=[6], rows=[4], object_fit="contain", height="auto")  # set rows to 24 to accommodate all images
    # btn = gr.Button("Generate images", scale=0)
    text_input = gr.Interface(fn=get_prompt, inputs="text", outputs=["image"] * 1)
    # btn.click(generate_images, text_input, gallery)  # pass the text input interface to btn.click()
demo.launch()