Spaces:
Sleeping
Sleeping
Merge branch 'streamlit'
Browse files# Conflicts:
# main_page.py
# requirements.txt
# sketch2diagram.py
- .dockerignore +1 -0
- Dockerfile +34 -0
- NLP_Group_logo.png +0 -0
- app.py +15 -0
- main_page.py +6 -0
- qwen2_inference.py +108 -0
- requirements.txt +11 -2
- sketch2diagram.py +45 -13
- util.py +26 -0
.dockerignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.venv
|
Dockerfile
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM nvidia/cuda:12.4.1-cudnn-runtime-ubuntu22.04
|
2 |
+
|
3 |
+
# Set environment variables to reduce interactive prompts
|
4 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
5 |
+
|
6 |
+
# Install dependencies
|
7 |
+
RUN apt-get update && apt-get install -y \
|
8 |
+
python3.10 \
|
9 |
+
python3-pip \
|
10 |
+
git \
|
11 |
+
texlive-latex-base \
|
12 |
+
texlive-latex-extra \
|
13 |
+
texlive-fonts-recommended \
|
14 |
+
texlive-latex-recommended \
|
15 |
+
latexmk \
|
16 |
+
poppler-utils \
|
17 |
+
&& rm -rf /var/lib/apt/lists/*
|
18 |
+
|
19 |
+
# Copy the files
|
20 |
+
WORKDIR /app
|
21 |
+
COPY requirements.txt .
|
22 |
+
|
23 |
+
RUN pip install --upgrade pip \
|
24 |
+
&& pip install --no-cache-dir -r requirements.txt
|
25 |
+
|
26 |
+
ENV PATH="/root/.local/bin:$PATH"
|
27 |
+
ENV STREAMLIT_WATCHER_TYPE none
|
28 |
+
|
29 |
+
RUN pip install --no-cache-dir https://github.com/mjun0812/flash-attention-prebuild-wheels/releases/download/v0.0.6/flash_attn-2.6.3+cu124torch2.6-cp310-cp310-linux_x86_64.whl
|
30 |
+
|
31 |
+
COPY . .
|
32 |
+
|
33 |
+
# Default command
|
34 |
+
ENTRYPOINT ["streamlit", "run", "app.py"]
|
NLP_Group_logo.png
ADDED
![]() |
app.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
logo_path = os.path.join(os.path.dirname(__file__), "NLP_Group_logo.png")
|
7 |
+
logo = Image.open(logo_path)
|
8 |
+
st.logo(logo, size="large")
|
9 |
+
main_page = st.Page("main_page.py", title="Main Page", icon="🏠")
|
10 |
+
sketch2diagram_page = st.Page("sketch2diagram.py", title="Sketch2Diagram", icon="🖼️")
|
11 |
+
# Add pages to the main page
|
12 |
+
|
13 |
+
pg = st.navigation([main_page, sketch2diagram_page])
|
14 |
+
|
15 |
+
pg.run()
|
main_page.py
CHANGED
@@ -3,3 +3,9 @@ import streamlit as st
|
|
3 |
st.title("Tohoku NLP Group - Language and Information Science Laboratory ")
|
4 |
st.write("Welcome to the Language and Information Science Laboratory!")
|
5 |
st.write("We are working on various projects and research focused on Visual Language Models.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
st.title("Tohoku NLP Group - Language and Information Science Laboratory ")
|
4 |
st.write("Welcome to the Language and Information Science Laboratory!")
|
5 |
st.write("We are working on various projects and research focused on Visual Language Models.")
|
6 |
+
|
7 |
+
|
8 |
+
# Link to sketch2diagram page
|
9 |
+
st.subheader("You can check out our models and demos here:")
|
10 |
+
|
11 |
+
st.write("[Sketch2Diagram](sketch2diagram) - A model that generates TikZ code from sketches.")
|
qwen2_inference.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from qwen_vl_utils import process_vision_info
|
8 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
9 |
+
|
10 |
+
load_dotenv()
|
11 |
+
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
12 |
+
|
13 |
+
|
14 |
+
def print_gpu_memory(label, memory_allocated, memory_reserved):
|
15 |
+
if torch.cuda.is_available():
|
16 |
+
print("-----------------------------------")
|
17 |
+
print(f"{label} GPU Memory Usage:")
|
18 |
+
print(f"Allocated: {memory_allocated / 1024 ** 2:.2f} MB")
|
19 |
+
print(f"Cached: {memory_reserved / 1024 ** 2:.2f} MB")
|
20 |
+
|
21 |
+
|
22 |
+
# Inference steps taken from https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
|
23 |
+
|
24 |
+
# @st.cache_resource
|
25 |
+
def get_model(model_path):
|
26 |
+
try:
|
27 |
+
with st.spinner(f"Loading model {model_path}"):
|
28 |
+
# Load the model here
|
29 |
+
model_import = Qwen2VLForConditionalGeneration.from_pretrained(
|
30 |
+
model_path, torch_dtype="auto", device_map="auto",
|
31 |
+
attn_implementation="flash_attention_2",
|
32 |
+
token=HUGGINGFACE_TOKEN,
|
33 |
+
)
|
34 |
+
model_import = model_import.to("cuda")
|
35 |
+
size = {
|
36 |
+
"shortest_edge": 224,
|
37 |
+
"longest_edge": 1024,
|
38 |
+
}
|
39 |
+
processor_import = AutoProcessor.from_pretrained("itsumi-st/imgtikz_qwen2vl",
|
40 |
+
size=size,
|
41 |
+
min_pixels=256 * 256,
|
42 |
+
max_pixels=1024 * 1024,
|
43 |
+
token=HUGGINGFACE_TOKEN)
|
44 |
+
processor_import.tokenizer.padding_side = 'left'
|
45 |
+
|
46 |
+
return model_import, processor_import
|
47 |
+
except Exception as e:
|
48 |
+
st.error(f"Error loading model: {e}")
|
49 |
+
return None, None
|
50 |
+
|
51 |
+
|
52 |
+
def run_inference(input_file, model_path, args):
|
53 |
+
model, processor = get_model(model_path)
|
54 |
+
if model is None or processor is None:
|
55 |
+
return "Error loading model."
|
56 |
+
|
57 |
+
# GPU Memory after model loading:
|
58 |
+
after_model_dump = (torch.cuda.memory_allocated(), torch.cuda.memory_reserved())
|
59 |
+
|
60 |
+
image = Image.open(input_file)
|
61 |
+
conversation = [
|
62 |
+
{
|
63 |
+
"role": "user",
|
64 |
+
"content": [
|
65 |
+
{"type": "image", "image": image},
|
66 |
+
{"type": "text", "text": "Please generate TikZ code to draw the diagram of the given image."}
|
67 |
+
],
|
68 |
+
}
|
69 |
+
]
|
70 |
+
text_prompt = processor.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
71 |
+
image_input, video_inputs = process_vision_info(conversation)
|
72 |
+
inputs = processor(
|
73 |
+
text=[text_prompt],
|
74 |
+
images=image_input,
|
75 |
+
videos=video_inputs,
|
76 |
+
padding=True,
|
77 |
+
return_tensors="pt",
|
78 |
+
).to("cuda")
|
79 |
+
|
80 |
+
# GPU Memory after input processing
|
81 |
+
after_input_dump = (torch.cuda.memory_allocated(), torch.cuda.memory_reserved())
|
82 |
+
|
83 |
+
output_ids = model.generate(**inputs,
|
84 |
+
max_new_tokens=args['max_length'],
|
85 |
+
do_sample=True,
|
86 |
+
top_p=args['top_p'],
|
87 |
+
top_k=args['top_k'],
|
88 |
+
use_cache=True,
|
89 |
+
num_return_sequences=1,
|
90 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
91 |
+
temperature=args['temperature']
|
92 |
+
)
|
93 |
+
generated_ids = [
|
94 |
+
output_ids[len(input_ids):]
|
95 |
+
for input_ids, output_ids in zip(inputs.input_ids, output_ids)
|
96 |
+
]
|
97 |
+
output_text = processor.batch_decode(
|
98 |
+
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
99 |
+
)
|
100 |
+
|
101 |
+
# GPU Memory after generation
|
102 |
+
after_gen_dump = (torch.cuda.memory_allocated(), torch.cuda.memory_reserved())
|
103 |
+
|
104 |
+
print_gpu_memory("Before Model", after_model_dump[0], after_model_dump[1])
|
105 |
+
print_gpu_memory("After Input", after_input_dump[0], after_input_dump[1])
|
106 |
+
print_gpu_memory("After Generation", after_gen_dump[0], after_gen_dump[1])
|
107 |
+
|
108 |
+
return output_text
|
requirements.txt
CHANGED
@@ -1,3 +1,12 @@
|
|
1 |
streamlit~=1.43.2
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
streamlit~=1.43.2
|
2 |
+
torch==2.6.0
|
3 |
+
torchvision==0.21.0
|
4 |
+
torchaudio
|
5 |
+
transformers==4.48.2
|
6 |
+
qwen-vl-utils==0.0.10
|
7 |
+
packaging
|
8 |
+
accelerate==1.0.1
|
9 |
+
requests
|
10 |
+
pillow
|
11 |
+
python-dotenv
|
12 |
+
pdf2image
|
sketch2diagram.py
CHANGED
@@ -1,12 +1,25 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
|
4 |
-
from
|
|
|
|
|
|
|
5 |
|
6 |
# Sidebar Setup
|
7 |
st.sidebar.title("Model Configuration")
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Introduction Section
|
12 |
st.title("Sketch2Diagram")
|
@@ -14,7 +27,6 @@ st.title("Sketch2Diagram")
|
|
14 |
st.write("This is a runnable demo of ImgTikZ model introduced in the Sketch2Diagram paper.")
|
15 |
st.write("Please refer to the [original paper](https://openreview.net/pdf?id=KvaDHPhhir) for more details.")
|
16 |
st.write("The model is trained to convert sketches into TikZ code, which can be used to generate vectorized diagrams.")
|
17 |
-
st.write(f"Inference Strategy: {inference_strat}")
|
18 |
|
19 |
# User Input Section
|
20 |
st.subheader("Upload your sketch")
|
@@ -25,22 +37,42 @@ input_method = st.selectbox("Input Method", ["Upload", "Camera"],
|
|
25 |
input_file = None
|
26 |
if input_method == "Camera":
|
27 |
input_file = st.camera_input("Take a picture of your sketch")
|
28 |
-
# Implement camera input functionality here
|
29 |
else:
|
30 |
input_file = st.file_uploader("Upload an image of your sketch", type=["png", "jpg", "jpeg"])
|
31 |
-
|
32 |
generate_command = None
|
33 |
# Display the uploaded image
|
34 |
if input_file is not None:
|
35 |
st.image(input_file, caption="Uploaded Sketch")
|
36 |
generate_command = st.button("Generate TikZ Code")
|
37 |
|
|
|
38 |
if generate_command:
|
39 |
-
model = get_model()
|
40 |
-
image = Image.open(input_file)
|
41 |
with st.spinner("Generating TikZ code..."):
|
42 |
-
output =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from pdf2image import convert_from_path
|
3 |
|
4 |
+
from qwen2_inference import run_inference
|
5 |
+
from util import compile_tikz_to_pdf
|
6 |
+
|
7 |
+
args = {}
|
8 |
|
9 |
# Sidebar Setup
|
10 |
st.sidebar.title("Model Configuration")
|
11 |
+
model_name = st.sidebar.selectbox("Model Name", ['Itsumi-st/Imgtikz_Qwen2vl', 'Qwen/Qwen2-VL-7B-Instruct'])
|
12 |
+
args['inference_strat'] = st.sidebar.selectbox("Inference Strategy", ["Iterative", "Multi-candidate"],
|
13 |
+
help="Choose the inference strategy for the model. Iterative generates one candidate at a time until an output compiles, while Multi-candidate generates multiple candidates in parallel.")
|
14 |
+
args['max_length'] = st.sidebar.slider("Max Length", 1, 5096, 2048,
|
15 |
+
help="Maximum length of the generated output. The model will generate text up to this length.")
|
16 |
+
args['seed'] = st.sidebar.number_input("Seed", min_value=0, value=42, step=1)
|
17 |
+
args['temperature'] = st.sidebar.slider("Temperature", 0.0, 1.0, 0.6, step=0.01,
|
18 |
+
help="Temperature parameter for sampling. Higher values result in more random outputs.")
|
19 |
+
args['top_p'] = st.sidebar.slider("Top P", 0.0, 1.0, 1.0, step=0.01,
|
20 |
+
help="Top P sampling parameter. The model will sample from the top P percentage of the probability distribution.")
|
21 |
+
args['top_k'] = st.sidebar.slider("Top K", 0, 100, 50, step=1,
|
22 |
+
help="Top K sampling parameter. The model will sample from the top K tokens with the highest probabilities.")
|
23 |
|
24 |
# Introduction Section
|
25 |
st.title("Sketch2Diagram")
|
|
|
27 |
st.write("This is a runnable demo of ImgTikZ model introduced in the Sketch2Diagram paper.")
|
28 |
st.write("Please refer to the [original paper](https://openreview.net/pdf?id=KvaDHPhhir) for more details.")
|
29 |
st.write("The model is trained to convert sketches into TikZ code, which can be used to generate vectorized diagrams.")
|
|
|
30 |
|
31 |
# User Input Section
|
32 |
st.subheader("Upload your sketch")
|
|
|
37 |
input_file = None
|
38 |
if input_method == "Camera":
|
39 |
input_file = st.camera_input("Take a picture of your sketch")
|
40 |
+
# todo: Implement camera input functionality here
|
41 |
else:
|
42 |
input_file = st.file_uploader("Upload an image of your sketch", type=["png", "jpg", "jpeg"])
|
43 |
+
st.write(args)
|
44 |
generate_command = None
|
45 |
# Display the uploaded image
|
46 |
if input_file is not None:
|
47 |
st.image(input_file, caption="Uploaded Sketch")
|
48 |
generate_command = st.button("Generate TikZ Code")
|
49 |
|
50 |
+
# Run model inference
|
51 |
if generate_command:
|
|
|
|
|
52 |
with st.spinner("Generating TikZ code..."):
|
53 |
+
output = run_inference(input_file, model_name, args)[0]
|
54 |
+
pdf_file_path = compile_tikz_to_pdf(output)
|
55 |
+
if output and pdf_file_path:
|
56 |
+
st.success("TikZ code generated successfully!")
|
57 |
+
st.code(output, language='latex')
|
58 |
+
|
59 |
+
st.download_button(
|
60 |
+
label="Download LaTeX Code",
|
61 |
+
data=output,
|
62 |
+
file_name="output.tex",
|
63 |
+
mime="text/plain"
|
64 |
+
)
|
65 |
+
|
66 |
+
# st.image(pdf_file_path, caption="Generated Diagram", use_column_width=True)
|
67 |
+
with open(pdf_file_path, "rb") as f:
|
68 |
+
st.download_button(
|
69 |
+
label="Download PDF",
|
70 |
+
data=f.read(), # ✅ this is the binary content
|
71 |
+
file_name="output.pdf",
|
72 |
+
mime="application/pdf"
|
73 |
+
)
|
74 |
|
75 |
+
images = convert_from_path(pdf_file_path)
|
76 |
+
st.image(images[0], caption="Generated Diagram", use_column_width=True)
|
77 |
+
else:
|
78 |
+
st.error("Failed to generate TikZ code.")
|
util.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
import tempfile
|
4 |
+
|
5 |
+
|
6 |
+
def compile_tikz_to_pdf(tikz_code):
|
7 |
+
temp_dir = tempfile.mkdtemp()
|
8 |
+
|
9 |
+
tex_path = os.path.join(temp_dir, "output.tex")
|
10 |
+
pdf_path = os.path.join(temp_dir, "output.pdf")
|
11 |
+
|
12 |
+
with open(tex_path, "w") as f:
|
13 |
+
f.write(tikz_code)
|
14 |
+
|
15 |
+
try:
|
16 |
+
subprocess.run(
|
17 |
+
["pdflatex", "-interaction=nonstopmode", tex_path],
|
18 |
+
cwd=temp_dir,
|
19 |
+
stdout=subprocess.PIPE,
|
20 |
+
stderr=subprocess.PIPE,
|
21 |
+
check=True,
|
22 |
+
)
|
23 |
+
return pdf_path
|
24 |
+
except subprocess.CalledProcessError as e:
|
25 |
+
print("PDF compilation failed:", e)
|
26 |
+
return None
|