Spaces:
Runtime error
Runtime error
File size: 2,001 Bytes
0d215ca e532db6 0d215ca 7f5cbab d7570a5 af56d2c d7570a5 b2703de f203ba6 9cecd9c f79758c 9cecd9c f203ba6 0d215ca f203ba6 a531b86 0d215ca d7570a5 af56d2c d7570a5 b2703de 8ff5e07 d7570a5 a531b86 87df952 a531b86 87df952 b2703de 8ff5e07 b2703de f203ba6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import streamlit as st
import requests
import time
from ast import literal_eval
@st.cache
def infer(prompt,
model_name,
max_new_tokens=10,
temperature=0.8,
top_p=1.0,
num_completions=1,
seed=42,
stop="\n"):
model_name_map = {
"GPT-JT-6B-v1": "Together-gpt-JT-6B-v1",
}
if float(temperature) == 0:
temperature = 0.01
my_post_dict = {
"model": "Together-gpt-JT-6B-v1",
"prompt": prompt,
"top_p": float(top_p),
"temperature": float(temperature),
"max_tokens": int(max_new_tokens),
"stop": stop.split(";")
}
response = requests.get("https://staging.together.xyz/api/inference", params=my_post_dict).json()
return response['output']['choices'][0]['text']
st.title("GPT-JT")
col1, col2 = st.columns([1, 3])
with col1:
model_name = st.selectbox("Model", ["GPT-JT-6B-v1"])
max_new_tokens = st.text_input('Max new tokens', "10")
temperature = st.text_input('temperature', "0.8")
top_p = st.text_input('top_p', "1.0")
num_completions = st.text_input('num_completions (only the best one will be returend)', "1")
stop = st.text_input('stop, split by;', r'\n')
seed = st.text_input('seed', "42")
with col2:
s_example = "Please answer the following question:\n\nQuestion: Where is Zurich?\nAnswer:"
prompt = st.text_area(
"Prompt",
value=s_example,
max_chars=4096,
height=400,
)
generated_area = st.empty()
generated_area.text("(Generate here)")
button_submit = st.button("Submit")
if button_submit:
generated_area.text(prompt)
report_text = infer(
prompt, model_name=model_name, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p,
num_completions=num_completions, seed=seed, stop=literal_eval("'''"+stop+"'''"),
)
generated_area.text(prompt + report_text) |