tlemagueresse
download examples from model
36d5d42
raw
history blame
1.71 kB
import gradio as gr
from huggingface_hub import hf_hub_download
import importlib.util
import os
import sys
# Step 1: Dynamically load the model file
repo_id = "tlmk22/QuefrencyGuardian"
model_path = hf_hub_download(repo_id=repo_id, filename="model.py")
model_dir = os.path.dirname(model_path)
if model_dir not in sys.path:
sys.path.append(model_dir)
spec = importlib.util.spec_from_file_location("model", model_path)
model_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(model_module)
FastModelHuggingFace = model_module.FastModelHuggingFace
fast_model = FastModelHuggingFace.from_pretrained(repo_id)
map_labels = {0: "chainsaw", 1: "environment"} # Label mapping
def predict_audio(file):
"""
Predict if a given audio file contains chainsaw activity or not.
File: Input WAV file (uploaded via Gradio).
"""
prediction = fast_model.predict(file, device="cpu")
predicted_label = map_labels[prediction[0]]
return f"Prediction: {predicted_label}"
ex1 = hf_hub_download(repo_id=repo_id, filename="examples/chainsaw.wav")
ex2 = hf_hub_download(repo_id=repo_id, filename="examples/environment.wav")
example_files = [
ex1,
ex2,
]
# Build Gradio Interface
drag_and_drop_input = gr.Audio(type="filepath", label="Upload WAV File")
output_text = gr.Textbox(label="Prediction Result")
demo = gr.Interface(
fn=predict_audio,
inputs=drag_and_drop_input,
outputs=output_text,
examples=example_files,
title="Quefrency Guardian: Chainsaw Noise Detector",
description="Drag and drop a .wav audio file to predict whether it contains chainsaw noise or background environment sounds.",
)
if __name__ == "__main__":
demo.launch()