Spaces:
Running
on
Zero
Running
on
Zero
10b
Browse files
app.py
CHANGED
@@ -14,10 +14,12 @@ import numpy as np
|
|
14 |
import spaces
|
15 |
|
16 |
|
17 |
-
adapter_id = "merve/paligemma2-3b-vqav2"
|
18 |
-
|
|
|
19 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
-
|
|
|
21 |
processor = PaliGemmaProcessor.from_pretrained(model_id)
|
22 |
|
23 |
###### Transformers Inference
|
@@ -28,7 +30,7 @@ def infer(
|
|
28 |
max_new_tokens: int
|
29 |
) -> str:
|
30 |
text = "answer en " + text
|
31 |
-
inputs = processor(text=text, images=image, return_tensors="pt").to(device)
|
32 |
with torch.inference_mode():
|
33 |
generated_ids = model.generate(
|
34 |
**inputs,
|
@@ -71,8 +73,8 @@ with gr.Blocks(css="style.css") as demo:
|
|
71 |
label="Max New Tokens",
|
72 |
info="Set to larger for longer generation.",
|
73 |
minimum=20,
|
74 |
-
maximum=
|
75 |
-
value=
|
76 |
step=10,
|
77 |
)
|
78 |
|
|
|
14 |
import spaces
|
15 |
|
16 |
|
17 |
+
#adapter_id = "merve/paligemma2-3b-vqav2"
|
18 |
+
adapter_id = "google/paligemma2-10b-pt-448"
|
19 |
+
model_id = "google/paligemma2-10b-pt-448"
|
20 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
+
dtype = torch.bfloat16
|
22 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(adapter_id, device_map='cuda', torch_dtype=dtype).eval()
|
23 |
processor = PaliGemmaProcessor.from_pretrained(model_id)
|
24 |
|
25 |
###### Transformers Inference
|
|
|
30 |
max_new_tokens: int
|
31 |
) -> str:
|
32 |
text = "answer en " + text
|
33 |
+
inputs = processor(text=text, images=image, return_tensors="pt").to(device=device, dtype=dtype)
|
34 |
with torch.inference_mode():
|
35 |
generated_ids = model.generate(
|
36 |
**inputs,
|
|
|
73 |
label="Max New Tokens",
|
74 |
info="Set to larger for longer generation.",
|
75 |
minimum=20,
|
76 |
+
maximum=1600,
|
77 |
+
value=256,
|
78 |
step=10,
|
79 |
)
|
80 |
|