File size: 1,320 Bytes
a97698b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gradio as gr
import torch
import argparse
import git

git.Repo.clone_from("https://huggingface.co/timroelofs123/face_re-aging", "./hf")

from model.models import UNet
from scripts.test_functions import process_image


model_path = "hf/best_unet_model.pth"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
unet_model = UNet().to(device)
unet_model.load_state_dict(torch.load(model_path))
unet_model.eval()

def block(image, source_age, target_age):
    return process_image(unet_model, image, video=False, source_age=source_age,
                         target_age=target_age, window_size=512, stride=256)

demo = gr.Interface(
    fn=block,
    inputs=[
        gr.Image(type="pil"),
        gr.Slider(10, 90, value=20, step=1, label="Current age", info="Choose your current age"),
        gr.Slider(10, 90, value=80, step=1, label="Target age", info="Choose the age you want to become")
    ],
    outputs="image",
    examples=[
        ['assets/gradio_example_images/1.png', 20, 80],
        ['assets/gradio_example_images/2.png', 75, 40],
        ['assets/gradio_example_images/3.png', 30, 70],
        ['assets/gradio_example_images/4.png', 22, 60],
        ['assets/gradio_example_images/5.png', 28, 75],
        ['assets/gradio_example_images/6.png', 35, 15]
    ],
)

demo.launch()