Spaces:
Runtime error
Runtime error
Commit
·
c002e8b
1
Parent(s):
5643bbe
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,9 +3,9 @@ import pandas as pd
|
|
| 3 |
import json
|
| 4 |
|
| 5 |
from langchain.document_loaders import DataFrameLoader
|
| 6 |
-
from langchain.text_splitter import
|
| 7 |
from langchain.llms import HuggingFaceHub
|
| 8 |
-
from langchain.embeddings
|
| 9 |
from langchain.vectorstores import Chroma
|
| 10 |
from langchain.chains import RetrievalQA
|
| 11 |
|
|
@@ -34,13 +34,21 @@ def url_changes(url, pages_to_visit, urls_to_scrape, repo_id):
|
|
| 34 |
result = json.loads(result)
|
| 35 |
|
| 36 |
results_df = pd.concat([results_df, pd.DataFrame.from_records([result])])
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
| 39 |
documents = loader.load()
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
texts = text_splitter.split_documents(documents)
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
retriever = db.as_retriever()
|
| 45 |
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature":0.1, "max_new_tokens":250})
|
| 46 |
global qa
|
|
|
|
| 3 |
import json
|
| 4 |
|
| 5 |
from langchain.document_loaders import DataFrameLoader
|
| 6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 7 |
from langchain.llms import HuggingFaceHub
|
| 8 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 9 |
from langchain.vectorstores import Chroma
|
| 10 |
from langchain.chains import RetrievalQA
|
| 11 |
|
|
|
|
| 34 |
result = json.loads(result)
|
| 35 |
|
| 36 |
results_df = pd.concat([results_df, pd.DataFrame.from_records([result])])
|
| 37 |
+
results_df.to_csv("./data.csv")
|
| 38 |
+
|
| 39 |
+
df = pd.read_csv("./data.csv")
|
| 40 |
+
loader = DataFrameLoader(df, page_content_column="text")
|
| 41 |
documents = loader.load()
|
| 42 |
+
print(f"{len(documents)} documents loaded")
|
| 43 |
+
|
| 44 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 45 |
texts = text_splitter.split_documents(documents)
|
| 46 |
+
print(f"documents splitted into {len(texts)} chunks")
|
| 47 |
+
|
| 48 |
+
embeddings = HuggingFaceEmbeddings(model_name="jhgan/ko-sroberta-multitask")
|
| 49 |
+
|
| 50 |
+
persist_directory = './vector_db'
|
| 51 |
+
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory)
|
| 52 |
retriever = db.as_retriever()
|
| 53 |
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature":0.1, "max_new_tokens":250})
|
| 54 |
global qa
|