Spaces:
Runtime error
Runtime error
Commit
·
2657429
1
Parent(s):
764f570
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,20 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import json
|
|
|
4 |
|
5 |
from langchain.document_loaders import DataFrameLoader
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
-
from langchain.embeddings
|
|
|
8 |
from langchain.vectorstores import Chroma
|
9 |
from langchain.chains import RetrievalQA
|
10 |
-
from langchain import HuggingFacePipeline
|
11 |
-
|
12 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
13 |
|
14 |
from trafilatura import fetch_url, extract
|
15 |
from trafilatura.spider import focused_crawler
|
16 |
from trafilatura.settings import use_config
|
17 |
|
18 |
-
|
19 |
|
20 |
|
21 |
def loading_website():
|
@@ -47,28 +46,14 @@ def url_changes(url, pages_to_visit, urls_to_scrape, repo_id):
|
|
47 |
texts = text_splitter.split_documents(documents)
|
48 |
print(f"documents splitted into {len(texts)} chunks")
|
49 |
|
50 |
-
embeddings =
|
51 |
|
52 |
persist_directory = './vector_db'
|
53 |
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory)
|
54 |
retriever = db.as_retriever()
|
55 |
|
56 |
-
MODEL = 'beomi/KoAlpaca-Polyglot-5.8B'
|
57 |
-
|
58 |
-
MODEL,
|
59 |
-
torch_dtype="auto",
|
60 |
-
)
|
61 |
-
model.eval()
|
62 |
-
pipe = pipeline(
|
63 |
-
'text-generation',
|
64 |
-
model=model,
|
65 |
-
tokenizer=MODEL,
|
66 |
-
max_length=512,
|
67 |
-
temperature=0,
|
68 |
-
top_p=0.95,
|
69 |
-
repetition_penalty=1.15
|
70 |
-
)
|
71 |
-
llm = HuggingFacePipeline(pipeline=pipe)
|
72 |
|
73 |
global qa
|
74 |
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import json
|
4 |
+
import os
|
5 |
|
6 |
from langchain.document_loaders import DataFrameLoader
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain.embeddings import HuggingFaceHubEmbeddings
|
9 |
+
from langchain.llms import HuggingFaceHub
|
10 |
from langchain.vectorstores import Chroma
|
11 |
from langchain.chains import RetrievalQA
|
|
|
|
|
|
|
12 |
|
13 |
from trafilatura import fetch_url, extract
|
14 |
from trafilatura.spider import focused_crawler
|
15 |
from trafilatura.settings import use_config
|
16 |
|
17 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
18 |
|
19 |
|
20 |
def loading_website():
|
|
|
46 |
texts = text_splitter.split_documents(documents)
|
47 |
print(f"documents splitted into {len(texts)} chunks")
|
48 |
|
49 |
+
embeddings = HuggingFaceHubEmbeddings(model_name="jhgan/ko-sroberta-multitask", huggingfacehub_api_token=HF_TOKEN)
|
50 |
|
51 |
persist_directory = './vector_db'
|
52 |
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory)
|
53 |
retriever = db.as_retriever()
|
54 |
|
55 |
+
#MODEL = 'beomi/KoAlpaca-Polyglot-5.8B'
|
56 |
+
llm = HuggingFaceHub(repo_id="beomi/KoAlpaca-Polyglot-5.8B", model_kwargs={"temperature":0.6, "max_new_tokens":250}, huggingfacehub_api_token=HF_TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
global qa
|
59 |
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
|