thuongtuandang commited on
Commit
e43c7b0
·
1 Parent(s): ba5ef60

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +40 -16
app.py CHANGED
@@ -1,22 +1,46 @@
1
  import gradio as gr
 
 
 
2
 
3
- # intensy: repetition of Hello
4
- def greet(name, intensity):
5
- return "Hello " * intensity + name + "!"
6
 
7
- demo = gr.Interface(
8
- fn=greet,
9
- inputs=["text", "slider"],
10
- outputs=["text"],
11
- )
 
 
12
 
13
- def addition(a, b):
14
- return a + b
15
 
16
- demo = gr.Interface(
17
- fn = addition,
18
- inputs = ["number", "number"],
19
- outputs = ["number"]
20
- )
21
 
22
- demo.launch(share=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
4
+ from threading import Thread
5
 
6
+ tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1")
7
+ model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1", torch_dtype=torch.float16)
8
+ model = model.to('cuda:0')
9
 
10
+ class StopOnTokens(StoppingCriteria):
11
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
12
+ stop_ids = [29, 0]
13
+ for stop_id in stop_ids:
14
+ if input_ids[0][-1] == stop_id:
15
+ return True
16
+ return False
17
 
18
+ def predict(message, history):
 
19
 
20
+ history_transformer_format = history + [[message, ""]]
21
+ stop = StopOnTokens()
 
 
 
22
 
23
+ messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]]) #curr_system_message +
24
+ for item in history_transformer_format])
25
+
26
+ model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
27
+ streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
28
+ generate_kwargs = dict(
29
+ model_inputs,
30
+ streamer=streamer,
31
+ max_new_tokens=1024,
32
+ do_sample=True,
33
+ top_p=0.95,
34
+ top_k=1000,
35
+ temperature=1.0,
36
+ num_beams=1,
37
+ stopping_criteria=StoppingCriteriaList([stop])
38
+ )
39
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
40
+ t.start()
41
+
42
+ partial_message = ""
43
+ for new_token in streamer:
44
+ if new_token != '<':
45
+ partial_message += new_token
46
+ yield partial_message