Spaces:
Running
Running
from audiobox_aesthetics.inference import AudioBoxAesthetics, AudioFileList, AudioFile | |
# cached results from running the CLI | |
cli_results = { | |
"sample_audio/libritts_spk-84.wav": { | |
"CE": 6.1027421951293945, | |
"CU": 6.3574299812316895, | |
"PC": 1.7401179075241089, | |
"PQ": 6.733065128326416, | |
}, | |
} | |
model_name = "thunnai/audiobox-aesthetics" | |
def test_inference(): | |
audio_path = "sample_audio/libritts_spk-84.wav" | |
audio_file = AudioFile(path=audio_path) | |
model = AudioBoxAesthetics.from_pretrained(model_name) | |
model.eval() | |
predictions = model.predict_from_files(audio_file) | |
single_pred = predictions[0] | |
print(single_pred) | |
assert single_pred["CE"] == cli_results[audio_path]["CE"] | |
assert single_pred["CU"] == cli_results[audio_path]["CU"] | |
assert single_pred["PC"] == cli_results[audio_path]["PC"] | |
assert single_pred["PQ"] == cli_results[audio_path]["PQ"] | |
def test_inference_load_from_jsonl(): | |
audio_file_list = AudioFileList.from_jsonl("sample_audio/test.jsonl") | |
model = AudioBoxAesthetics.from_pretrained(model_name) | |
model.eval() | |
audio_path = audio_file_list.files[0].path | |
predictions = model.predict_from_files(audio_file_list) | |
single_pred = predictions[0] | |
assert single_pred["CE"] == cli_results[audio_path]["CE"] | |
assert single_pred["CU"] == cli_results[audio_path]["CU"] | |
assert single_pred["PC"] == cli_results[audio_path]["PC"] | |
assert single_pred["PQ"] == cli_results[audio_path]["PQ"] | |
def test_inference_twice_on_same_audio_yields_same_result(): | |
audio_file = AudioFile(path="sample_audio/libritts_spk-84.wav") | |
model = AudioBoxAesthetics.from_pretrained(model_name) | |
model.eval() | |
predictions_a = model.predict_from_files(audio_file) | |
predictions_b = model.predict_from_files(audio_file) | |
single_pred_a = predictions_a[0] | |
single_pred_b = predictions_b[0] | |
assert single_pred_a["CE"] == single_pred_b["CE"] | |
assert single_pred_a["CU"] == single_pred_b["CU"] | |
assert single_pred_a["PC"] == single_pred_b["PC"] | |
assert single_pred_a["PQ"] == single_pred_b["PQ"] | |
def test_loading_from_wav(): | |
audio_path = "sample_audio/libritts_spk-84.wav" | |
model = AudioBoxAesthetics.from_pretrained(model_name) | |
model.eval() | |
wav = model.load_audio(audio_path) | |
predictions = model.predict_from_wavs(wav) | |
single_pred = predictions[0] | |
assert single_pred["CE"] == cli_results[audio_path]["CE"] | |
assert single_pred["CU"] == cli_results[audio_path]["CU"] | |
assert single_pred["PC"] == cli_results[audio_path]["PC"] | |
assert single_pred["PQ"] == cli_results[audio_path]["PQ"] | |