#!/usr/bin/env python """ Demo showcasing parameter-efficient fine-tuning of Stable Dissfusion via Dreambooth leveraging 🤗 PEFT (https://github.com/huggingface/peft) The code in this repo is partly adapted from the following repositories: https://huggingface.co/spaces/hysts/LoRA-SD-training https://huggingface.co/spaces/multimodalart/dreambooth-training """ from __future__ import annotations import os import pathlib import gradio as gr import torch from typing import List from inference import InferencePipeline from trainer import Trainer from uploader import upload TITLE = "# RealFill Training and Inference Demo 🎨" DESCRIPTION = "Demo showcasing parameter-efficient fine-tuning of Stable Diffusion Inpainting via RealFill leveraging 🤗 PEFT (https://github.com/huggingface/peft)." ORIGINAL_SPACE_ID = "thuanz123/peft-sd-realfill" SPACE_ID = os.getenv("SPACE_ID", ORIGINAL_SPACE_ID) SHARED_UI_WARNING = f"""# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
Duplicate Space
""" if os.getenv("SYSTEM") == "spaces" and SPACE_ID != ORIGINAL_SPACE_ID: SETTINGS = f'Settings' else: SETTINGS = "Settings" CUDA_NOT_AVAILABLE_WARNING = f"""# Attention - Running on CPU.
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces. "T4 small" is sufficient to run this demo.
""" def show_warning(warning_text: str) -> gr.Blocks: with gr.Blocks() as demo: with gr.Box(): gr.Markdown(warning_text) return demo def update_output_files() -> dict: paths = sorted(pathlib.Path("results").glob("*.pt")) config_paths = sorted(pathlib.Path("results").glob("*.json")) paths = paths + config_paths paths = [path.as_posix() for path in paths] # type: ignore return gr.update(value=paths or None) def create_training_demo(trainer: Trainer, pipe: InferencePipeline) -> gr.Blocks: with gr.Blocks() as demo: base_model = gr.Dropdown( choices=[ "runwayml/stable-diffusion-inpainting", "stabilityai/stable-diffusion-2-inpainting", ], value="stabilityai/stable-diffusion-2-inpainting", label="Base Model", visible=True, ) resolution = gr.Dropdown(choices=["512"], value="512", label="Resolution", visible=False) with gr.Row(): with gr.Box(): gr.Markdown("Training Data") ref_images = gr.Files(label="Reference images") target_image = gr.Files(label="Target image") target_mask = gr.Files(label="Target mask") gr.Markdown( """ - Upload reference images of the scene you are planning on training on. - For a concept prompt, use a unique, made up word to avoid collisions. - Guidelines for getting good results: - 1-5 images of the object from different angles - 2000 iterations should be good enough. - LoRA Rank for unet - 8 - LoRA Alpha for unet - 16 - lora dropout - 0.1 - LoRA Bias for unet - `none` - Uncheck `FP16` and `8bit-Adam` only if you have VRAM at least 32GB - Experiment with various values for lora dropouts, enabling/disabling fp16 and 8bit-Adam """ ) with gr.Box(): gr.Markdown("Training Parameters") num_training_steps = gr.Number(label="Number of Training Steps", value=2000, precision=0) unet_learning_rate = gr.Number(label="Unet Learning Rate", value=2e-4) text_encoder_learning_rate = gr.Number(label="Text Encoder Learning Rate", value=4e-5) gradient_checkpointing = gr.Checkbox(label="Whether to use gradient checkpointing", value=True) lora_rank = gr.Number(label="LoRA Rank for unet", value=8, precision=0) lora_alpha = gr.Number( label="LoRA Alpha for unet. scaling factor = lora_alpha/lora_r", value=16, precision=0 ) lora_dropout = gr.Number(label="lora dropout", value=0.1) lora_bias = gr.Dropdown( choices=["none", "all", "lora_only"], value="none", label="LoRA Bias for unet. This enables bias params to be trainable based on the bias type", visible=True, ) gradient_accumulation = gr.Number(label="Number of Gradient Accumulation", value=1, precision=0) fp16 = gr.Checkbox(label="FP16", value=True) use_8bit_adam = gr.Checkbox(label="Use 8bit Adam", value=True) gr.Markdown( """ - It will take about 40-60 minutes to train for 2000 steps with a T4 GPU. - You may want to try a small number of steps first, like 1, to see if everything works fine in your environment. - Note that your trained models will be deleted when the second training is started. You can upload your trained model in the "Upload" tab. """ ) run_button = gr.Button("Start Training") with gr.Box(): with gr.Row(): check_status_button = gr.Button("Check Training Status") with gr.Column(): with gr.Box(): gr.Markdown("Message") training_status = gr.Markdown() output_files = gr.Files(label="Trained Model Files") run_button.click(fn=pipe.clear) run_button.click( fn=trainer.run, inputs=[ base_model, resolution, num_training_steps, ref_images, target_image, target_mask, unet_learning_rate, text_encoder_learning_rate, gradient_accumulation, fp16, use_8bit_adam, gradient_checkpointing, lora_rank, lora_alpha, lora_bias, lora_dropout, ], outputs=[ training_status, output_files, ], queue=False, ) check_status_button.click(fn=trainer.check_if_running, inputs=None, outputs=training_status, queue=False) check_status_button.click(fn=update_output_files, inputs=None, outputs=output_files, queue=False) return demo def find_model_files() -> list[str]: curr_dir = pathlib.Path(__file__).parent paths = sorted(curr_dir.glob('*')) paths = [ path for path in paths if (path / 'model_index.json').exists() ] return [path.relative_to(curr_dir).as_posix() for path in paths] def reload_realfill_model_list() -> dict: return gr.update(choices=find_model_files()) def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks: with gr.Blocks() as demo: with gr.Row(): with gr.Column(): reload_button = gr.Button("Reload Model List") realfill_model = gr.Dropdown( choices=find_model_files(), label="RealFill Model File" ) target_image = gr.Files(label="Target image") target_mask = gr.Files(label="Target mask") seed = gr.Slider(label="Seed", minimum=0, maximum=100000, step=1, value=1) with gr.Accordion("Other Parameters", open=False): num_steps = gr.Slider(label="Number of Steps", minimum=0, maximum=1000, step=1, value=50) guidance_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=50, step=0.1, value=7) run_button = gr.Button("Generate") gr.Markdown( """ - After training, you can press "Reload Model List" button to load your trained model names. """ ) with gr.Column(): result = gr.Image(label="Result") reload_button.click(fn=reload_realfill_model_list, inputs=None, outputs=realfill_model) run_button.click( fn=pipe.run, inputs=[ realfill_model, target_image, target_mask, seed, num_steps, guidance_scale, ], outputs=result, queue=False, ) seed.change( fn=pipe.run, inputs=[ realfill_model, target_image, target_mask, seed, num_steps, guidance_scale, ], outputs=result, queue=False, ) return demo def create_upload_demo() -> gr.Blocks: with gr.Blocks() as demo: model_name = gr.Textbox(label="Model Name") hf_token = gr.Textbox(label="Hugging Face Token (with write permission)") upload_button = gr.Button("Upload") with gr.Box(): gr.Markdown("Message") result = gr.Markdown() gr.Markdown( """ - You can upload your trained model to your private Model repo (i.e. https://huggingface.co/{your_username}/{model_name}). - You can find your Hugging Face token [here](https://huggingface.co/settings/tokens). """ ) upload_button.click(fn=upload, inputs=[model_name, hf_token], outputs=result) return demo pipe = InferencePipeline() trainer = Trainer() with gr.Blocks(css="style.css") as demo: if os.getenv("IS_SHARED_UI"): show_warning(SHARED_UI_WARNING) if not torch.cuda.is_available(): show_warning(CUDA_NOT_AVAILABLE_WARNING) gr.Markdown(TITLE) gr.Markdown(DESCRIPTION) with gr.Tabs(): with gr.TabItem("Train"): create_training_demo(trainer, pipe) with gr.TabItem("Test"): create_inference_demo(pipe) with gr.TabItem("Upload"): create_upload_demo() demo.queue(default_enabled=False).launch(share=False)