File size: 11,295 Bytes
275aca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#!/usr/bin/env python
"""
Demo showcasing parameter-efficient fine-tuning of Stable Dissfusion via Dreambooth leveraging 🤗 PEFT (https://github.com/huggingface/peft)

The code in this repo is partly adapted from the following repositories:
https://huggingface.co/spaces/hysts/LoRA-SD-training
https://huggingface.co/spaces/multimodalart/dreambooth-training
"""
from __future__ import annotations

import os
import pathlib

import gradio as gr
import torch
from typing import List

from inference import InferencePipeline
from trainer import Trainer
from uploader import upload


TITLE = "# RealFill Training and Inference Demo 🎨"
DESCRIPTION = "Demo showcasing parameter-efficient fine-tuning of Stable Diffusion Inpainting via RealFill leveraging 🤗 PEFT (https://github.com/huggingface/peft)."


ORIGINAL_SPACE_ID = "thuanz123/peft-sd-realfill"

SPACE_ID = os.getenv("SPACE_ID", ORIGINAL_SPACE_ID)
SHARED_UI_WARNING = f"""# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
"""
if os.getenv("SYSTEM") == "spaces" and SPACE_ID != ORIGINAL_SPACE_ID:
    SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'

else:
    SETTINGS = "Settings"
CUDA_NOT_AVAILABLE_WARNING = f"""# Attention - Running on CPU.
<center>
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
"T4 small" is sufficient to run this demo.
</center>
"""


def show_warning(warning_text: str) -> gr.Blocks:
    with gr.Blocks() as demo:
        with gr.Box():
            gr.Markdown(warning_text)
    return demo


def update_output_files() -> dict:
    paths = sorted(pathlib.Path("results").glob("*.pt"))
    config_paths = sorted(pathlib.Path("results").glob("*.json"))
    paths = paths + config_paths
    paths = [path.as_posix() for path in paths]  # type: ignore
    return gr.update(value=paths or None)


def create_training_demo(trainer: Trainer, pipe: InferencePipeline) -> gr.Blocks:
    with gr.Blocks() as demo:
        base_model = gr.Dropdown(
            choices=[
                "runwayml/stable-diffusion-inpainting",
                "stabilityai/stable-diffusion-2-inpainting",
            ],
            value="stabilityai/stable-diffusion-2-inpainting",
            label="Base Model",
            visible=True,
        )
        resolution = gr.Dropdown(choices=["512"], value="512", label="Resolution", visible=False)

        with gr.Row():
            with gr.Box():
                gr.Markdown("Training Data")
                ref_images = gr.Files(label="Reference images")
                target_image = gr.Files(label="Target image")
                target_mask = gr.Files(label="Target mask")
                gr.Markdown(
                    """
                    - Upload reference images of the scene you are planning on training on.
                    - For a concept prompt, use a unique, made up word to avoid collisions.
                    - Guidelines for getting good results:
                        - 1-5 images of the object from different angles
                        - 2000 iterations should be good enough. 
                        - LoRA Rank for unet - 8
                        - LoRA Alpha for unet - 16
                        - lora dropout - 0.1
                        - LoRA Bias for unet - `none`
                        - Uncheck `FP16` and `8bit-Adam` only if you have VRAM at least 32GB
                        - Experiment with various values for lora dropouts, enabling/disabling fp16 and 8bit-Adam
                    """
                )
            with gr.Box():
                gr.Markdown("Training Parameters")
                num_training_steps = gr.Number(label="Number of Training Steps", value=2000, precision=0)
                unet_learning_rate = gr.Number(label="Unet Learning Rate", value=2e-4)
                text_encoder_learning_rate = gr.Number(label="Text Encoder Learning Rate", value=4e-5)
                gradient_checkpointing = gr.Checkbox(label="Whether to use gradient checkpointing", value=True)
                lora_rank = gr.Number(label="LoRA Rank for unet", value=8, precision=0)
                lora_alpha = gr.Number(
                    label="LoRA Alpha for unet. scaling factor = lora_alpha/lora_r", value=16, precision=0
                )
                lora_dropout = gr.Number(label="lora dropout", value=0.1)
                lora_bias = gr.Dropdown(
                    choices=["none", "all", "lora_only"],
                    value="none",
                    label="LoRA Bias for unet. This enables bias params to be trainable based on the bias type",
                    visible=True,
                )
                gradient_accumulation = gr.Number(label="Number of Gradient Accumulation", value=1, precision=0)
                fp16 = gr.Checkbox(label="FP16", value=True)
                use_8bit_adam = gr.Checkbox(label="Use 8bit Adam", value=True)
                gr.Markdown(
                    """
                    - It will take about 40-60 minutes to train for 2000 steps with a T4 GPU.
                    - You may want to try a small number of steps first, like 1, to see if everything works fine in your environment.
                    - Note that your trained models will be deleted when the second training is started. You can upload your trained model in the "Upload" tab.
                    """
                )

        run_button = gr.Button("Start Training")
        with gr.Box():
            with gr.Row():
                check_status_button = gr.Button("Check Training Status")
                with gr.Column():
                    with gr.Box():
                        gr.Markdown("Message")
                        training_status = gr.Markdown()
                    output_files = gr.Files(label="Trained Model Files")

        run_button.click(fn=pipe.clear)

        run_button.click(
            fn=trainer.run,
            inputs=[
                base_model,
                resolution,
                num_training_steps,
                ref_images,
                target_image,
                target_mask,
                unet_learning_rate,
                text_encoder_learning_rate,
                gradient_accumulation,
                fp16,
                use_8bit_adam,
                gradient_checkpointing,
                lora_rank,
                lora_alpha,
                lora_bias,
                lora_dropout,
            ],
            outputs=[
                training_status,
                output_files,
            ],
            queue=False,
        )
        check_status_button.click(fn=trainer.check_if_running, inputs=None, outputs=training_status, queue=False)
        check_status_button.click(fn=update_output_files, inputs=None, outputs=output_files, queue=False)
    return demo


def find_model_files() -> list[str]:
    curr_dir = pathlib.Path(__file__).parent
    paths = sorted(curr_dir.glob('*'))
    paths = [
        path for path in paths
        if (path / 'model_index.json').exists()
    ]
    return [path.relative_to(curr_dir).as_posix() for path in paths]


def reload_realfill_model_list() -> dict:
    return gr.update(choices=find_model_files())


def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                reload_button = gr.Button("Reload Model List")
                realfill_model = gr.Dropdown(
                    choices=find_model_files(), label="RealFill Model File"
                )
                target_image = gr.Files(label="Target image")
                target_mask = gr.Files(label="Target mask")
                seed = gr.Slider(label="Seed", minimum=0, maximum=100000, step=1, value=1)
                with gr.Accordion("Other Parameters", open=False):
                    num_steps = gr.Slider(label="Number of Steps", minimum=0, maximum=1000, step=1, value=50)
                    guidance_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=50, step=0.1, value=7)

                run_button = gr.Button("Generate")

                gr.Markdown(
                    """
                    - After training, you can press "Reload Model List" button to load your trained model names.
                    """
                )
            with gr.Column():
                result = gr.Image(label="Result")

        reload_button.click(fn=reload_realfill_model_list, inputs=None, outputs=realfill_model)
        run_button.click(
            fn=pipe.run,
            inputs=[
                realfill_model,
                target_image,
                target_mask,
                seed,
                num_steps,
                guidance_scale,
            ],
            outputs=result,
            queue=False,
        )
        seed.change(
            fn=pipe.run,
            inputs=[
                realfill_model,
                target_image,
                target_mask,
                seed,
                num_steps,
                guidance_scale,
            ],
            outputs=result,
            queue=False,
        )
    return demo


def create_upload_demo() -> gr.Blocks:
    with gr.Blocks() as demo:
        model_name = gr.Textbox(label="Model Name")
        hf_token = gr.Textbox(label="Hugging Face Token (with write permission)")
        upload_button = gr.Button("Upload")
        with gr.Box():
            gr.Markdown("Message")
            result = gr.Markdown()
        gr.Markdown(
            """
            - You can upload your trained model to your private Model repo (i.e. https://huggingface.co/{your_username}/{model_name}).
            - You can find your Hugging Face token [here](https://huggingface.co/settings/tokens).
            """
        )

    upload_button.click(fn=upload, inputs=[model_name, hf_token], outputs=result)

    return demo


pipe = InferencePipeline()
trainer = Trainer()

with gr.Blocks(css="style.css") as demo:
    if os.getenv("IS_SHARED_UI"):
        show_warning(SHARED_UI_WARNING)
    if not torch.cuda.is_available():
        show_warning(CUDA_NOT_AVAILABLE_WARNING)

    gr.Markdown(TITLE)
    gr.Markdown(DESCRIPTION)

    with gr.Tabs():
        with gr.TabItem("Train"):
            create_training_demo(trainer, pipe)
        with gr.TabItem("Test"):
            create_inference_demo(pipe)
        with gr.TabItem("Upload"):
            create_upload_demo()

demo.queue(default_enabled=False).launch(share=False)