Spaces:
Running
Running
fix env
Browse files- Dockerfile +1 -1
- app.py +2 -2
Dockerfile
CHANGED
@@ -8,7 +8,7 @@ WORKDIR /home/user/app
|
|
8 |
|
9 |
RUN sed -i 's http://deb.debian.org http://cdn-aws.deb.debian.org g' /etc/apt/sources.list && sed -i 's http://archive.ubuntu.com http://us-east-1.ec2.archive.ubuntu.com g' /etc/apt/sources.list && sed -i '/security/d' /etc/apt/sources.list && apt-get update && apt-get install -y git git-lfs ffmpeg libsm6 libxext6 cmake libgl1-mesa-glx && rm -rf /var/lib/apt/lists/* && git lfs install
|
10 |
|
11 |
-
RUN pip install --no-cache-dir Cython "gradio==3.28.3" "torch==1.10.1"
|
12 |
|
13 |
RUN git clone --recurse-submodules https://github.com/thu-coai/DA-Transformer.git && cd DA-Transformer && git checkout demo && pip install -e . && cd dag_search && python3 setup.py build_ext --inplace && pip install -e . && cd ../..
|
14 |
|
|
|
8 |
|
9 |
RUN sed -i 's http://deb.debian.org http://cdn-aws.deb.debian.org g' /etc/apt/sources.list && sed -i 's http://archive.ubuntu.com http://us-east-1.ec2.archive.ubuntu.com g' /etc/apt/sources.list && sed -i '/security/d' /etc/apt/sources.list && apt-get update && apt-get install -y git git-lfs ffmpeg libsm6 libxext6 cmake libgl1-mesa-glx && rm -rf /var/lib/apt/lists/* && git lfs install
|
10 |
|
11 |
+
RUN pip install --no-cache-dir Cython "gradio==3.28.3" "torch==1.10.1" jieba subword-nmt
|
12 |
|
13 |
RUN git clone --recurse-submodules https://github.com/thu-coai/DA-Transformer.git && cd DA-Transformer && git checkout demo && pip install -e . && cd dag_search && python3 setup.py build_ext --inplace && pip install -e . && cd ../..
|
14 |
|
app.py
CHANGED
@@ -28,7 +28,7 @@ from mass.s2s_model import TransformerMASSModel
|
|
28 |
from transformer.hub_interface import TransformerHubInterface
|
29 |
|
30 |
notice_markdown = ("""
|
31 |
-
# Directed Acyclic Transformer: A Non-Autoregressive Sequence-to-Sequence Model designed for Parallel Text Generation.
|
32 |
- **Fast Generation**: DA-Transformer offers faster inference compared to autoregressive Transformers (with fairseq implementation), with a reduction in latency by 7~14x and an increase in throughput by ~20x.
|
33 |
- **High Quality**: DA-Transformer performs competitively with autoregressive Transformers, even with pre-trained models like BART, in a variety of text generation tasks.
|
34 |
- **Easy Training**: DA-Transformer can be trained end-to-end without requiring knowledge distillation, making it simple and straightforward to train.
|
@@ -527,7 +527,7 @@ def build_demo():
|
|
527 |
|
528 |
gr.Markdown(learn_more_markdown)
|
529 |
|
530 |
-
|
531 |
|
532 |
demo.load(None,None,None,_js=open("global.js").read())
|
533 |
return demo
|
|
|
28 |
from transformer.hub_interface import TransformerHubInterface
|
29 |
|
30 |
notice_markdown = ("""
|
31 |
+
# ⚡ Directed Acyclic Transformer: A Non-Autoregressive Sequence-to-Sequence Model designed for Parallel Text Generation.
|
32 |
- **Fast Generation**: DA-Transformer offers faster inference compared to autoregressive Transformers (with fairseq implementation), with a reduction in latency by 7~14x and an increase in throughput by ~20x.
|
33 |
- **High Quality**: DA-Transformer performs competitively with autoregressive Transformers, even with pre-trained models like BART, in a variety of text generation tasks.
|
34 |
- **Easy Training**: DA-Transformer can be trained end-to-end without requiring knowledge distillation, making it simple and straightforward to train.
|
|
|
527 |
|
528 |
gr.Markdown(learn_more_markdown)
|
529 |
|
530 |
+
detail_load(demo.load)
|
531 |
|
532 |
demo.load(None,None,None,_js=open("global.js").read())
|
533 |
return demo
|