throaway2854's picture
Update app.py
79ea3d6 verified
raw
history blame
12 kB
import gradio as gr
import os
import zipfile
import json
from io import BytesIO
import base64
from PIL import Image
import uuid
import tempfile
import numpy as np
def save_dataset_to_zip(dataset_name, dataset):
# Create a temporary directory
temp_dir = tempfile.mkdtemp()
dataset_path = os.path.join(temp_dir, dataset_name)
os.makedirs(dataset_path, exist_ok=True)
images_dir = os.path.join(dataset_path, 'images')
os.makedirs(images_dir, exist_ok=True)
annotations = []
for idx, entry in enumerate(dataset):
image_data = entry['image']
prompt = entry['prompt']
# Save image to images directory
image_filename = f"{uuid.uuid4().hex}.png"
image_path = os.path.join(images_dir, image_filename)
# Decode the base64 image data
image = Image.open(BytesIO(base64.b64decode(image_data.split(",")[1])))
image.save(image_path)
# Add annotation
annotations.append({
'file_name': os.path.join('images', image_filename),
'text': prompt
})
# Save annotations to JSONL file
annotations_path = os.path.join(dataset_path, 'annotations.jsonl')
with open(annotations_path, 'w') as f:
for ann in annotations:
f.write(json.dumps(ann) + '\n')
# Create a zip file
zip_buffer = BytesIO()
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, dirs, files in os.walk(dataset_path):
for file in files:
abs_file = os.path.join(root, file)
rel_file = os.path.relpath(abs_file, dataset_path)
zipf.write(abs_file, rel_file)
zip_buffer.seek(0)
return zip_buffer
def load_dataset_from_zip(zip_file):
temp_dir = tempfile.mkdtemp()
with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
zip_ref.extractall(temp_dir)
dataset_name = os.listdir(temp_dir)[0]
dataset_path = os.path.join(temp_dir, dataset_name)
dataset = []
images_dir = os.path.join(dataset_path, 'images')
annotations_path = os.path.join(dataset_path, 'annotations.jsonl')
if os.path.exists(annotations_path):
with open(annotations_path, 'r') as f:
for line in f:
ann = json.loads(line)
file_name = ann['file_name']
prompt = ann['text']
image_path = os.path.join(dataset_path, file_name)
# Read image and convert to base64
with open(image_path, 'rb') as img_f:
image_bytes = img_f.read()
encoded = base64.b64encode(image_bytes).decode()
mime_type = "image/png"
image_data = f"data:{mime_type};base64,{encoded}"
dataset.append({
'image': image_data,
'prompt': prompt
})
return dataset_name, dataset
def display_dataset_html(dataset):
if dataset:
html_content = ""
for idx, entry in enumerate(dataset):
image_data = entry['image']
prompt = entry['prompt']
html_content += f"""
<div style="display: flex; align-items: center; margin-bottom: 10px;">
<div style="width: 50px;">{idx}</div>
<img src="{image_data}" alt="Image {idx}" style="max-height: 100px; margin-right: 10px;"/>
<div>{prompt}</div>
</div>
"""
return html_content
else:
return "<div>No entries in dataset.</div>"
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 20px;'>Dataset Builder</h1>")
datasets = gr.State({})
current_dataset_name = gr.State("")
dataset_selector = gr.Dropdown(label="Select Dataset", interactive=True)
dataset_html = gr.HTML()
message_box = gr.Textbox(interactive=False, label="Message")
with gr.Tab("Create / Upload Dataset"):
with gr.Row():
with gr.Column():
gr.Markdown("### Create a New Dataset")
dataset_name_input = gr.Textbox(label="New Dataset Name")
create_button = gr.Button("Create Dataset")
with gr.Column():
gr.Markdown("### Upload Existing Dataset")
upload_input = gr.File(label="Upload Dataset Zip", file_types=['.zip'])
upload_button = gr.Button("Upload Dataset")
def create_dataset(name, datasets):
if not name:
return gr.update(), "Please enter a dataset name."
if name in datasets:
return gr.update(), f"Dataset '{name}' already exists."
datasets[name] = []
return gr.update(choices=list(datasets.keys()), value=name), f"Dataset '{name}' created."
create_button.click(
create_dataset,
inputs=[dataset_name_input, datasets],
outputs=[dataset_selector, message_box]
)
def upload_dataset(zip_file, datasets):
if zip_file is None:
return gr.update(), "Please upload a zip file."
dataset_name, dataset = load_dataset_from_zip(zip_file)
if dataset_name in datasets:
return gr.update(), f"Dataset '{dataset_name}' already exists."
datasets[dataset_name] = dataset
return gr.update(choices=list(datasets.keys()), value=dataset_name), f"Dataset '{dataset_name}' uploaded."
upload_button.click(
upload_dataset,
inputs=[upload_input, datasets],
outputs=[dataset_selector, message_box]
)
def select_dataset(dataset_name, datasets):
if dataset_name in datasets:
dataset = datasets[dataset_name]
html_content = display_dataset_html(dataset)
# Update entry_selector options
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return dataset_name, gr.update(value=html_content), gr.update(choices=entry_options), ""
else:
return "", gr.update(value="<div>Select a dataset.</div>"), gr.update(choices=[]), ""
dataset_selector.change(
select_dataset,
inputs=[dataset_selector, datasets],
outputs=[current_dataset_name, dataset_html, gr.Variable(), message_box]
)
with gr.Tab("Add Entry"):
with gr.Row():
image_input = gr.Image(label="Upload Image")
prompt_input = gr.Textbox(label="Prompt")
add_button = gr.Button("Add Entry")
def add_entry(image_data, prompt, current_dataset_name, datasets):
if not current_dataset_name:
return datasets, gr.update(), gr.update(), "No dataset selected."
if image_data is None or not prompt:
return datasets, gr.update(), gr.update(), "Please provide both an image and a prompt."
# Convert image_data to base64
image = Image.fromarray(image_data.astype('uint8'))
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
img_data = f"data:image/png;base64,{img_str}"
datasets[current_dataset_name].append({'image': img_data, 'prompt': prompt})
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset)
# Update entry_selector options
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return datasets, gr.update(value=html_content), gr.update(choices=entry_options), f"Entry added to dataset '{current_dataset_name}'."
add_button.click(
add_entry,
inputs=[image_input, prompt_input, current_dataset_name, datasets],
outputs=[datasets, dataset_html, gr.Variable(), message_box]
)
with gr.Tab("Edit / Delete Entry"):
# Entry selector
entry_selector = gr.Dropdown(label="Select Entry to Edit/Delete")
selected_image = gr.Image(label="Selected Image", interactive=False)
selected_prompt = gr.Textbox(label="Current Prompt", interactive=False)
new_prompt_input = gr.Textbox(label="New Prompt (for Edit)")
with gr.Row():
edit_button = gr.Button("Edit Entry")
delete_button = gr.Button("Delete Entry")
def update_selected_entry(entry_option, current_dataset_name, datasets):
if not current_dataset_name or not entry_option:
return gr.update(), gr.update()
index = int(entry_option.split(":")[0])
entry = datasets[current_dataset_name][index]
image_data = entry['image']
prompt = entry['prompt']
return gr.update(value=image_data), gr.update(value=prompt)
entry_selector.change(
update_selected_entry,
inputs=[entry_selector, current_dataset_name, datasets],
outputs=[selected_image, selected_prompt]
)
def edit_entry(entry_option, new_prompt, current_dataset_name, datasets):
if not current_dataset_name:
return datasets, gr.update(), gr.update(), "No dataset selected."
if not entry_option or not new_prompt.strip():
return datasets, gr.update(), gr.update(), "Please select an entry and provide a new prompt."
index = int(entry_option.split(":")[0])
datasets[current_dataset_name][index]['prompt'] = new_prompt
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset)
# Update entry_selector options
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return datasets, gr.update(value=html_content), gr.update(choices=entry_options), f"Entry {index} updated."
edit_button.click(
edit_entry,
inputs=[entry_selector, new_prompt_input, current_dataset_name, datasets],
outputs=[datasets, dataset_html, entry_selector, message_box]
)
def delete_entry(entry_option, current_dataset_name, datasets):
if not current_dataset_name:
return datasets, gr.update(), gr.update(), "No dataset selected."
if not entry_option:
return datasets, gr.update(), gr.update(), "Please select an entry to delete."
index = int(entry_option.split(":")[0])
del datasets[current_dataset_name][index]
dataset = datasets[current_dataset_name]
html_content = display_dataset_html(dataset)
# Update entry_selector options
entry_options = [f"{idx}: {entry['prompt'][:30]}" for idx, entry in enumerate(dataset)]
return datasets, gr.update(value=html_content), gr.update(choices=entry_options), f"Entry {index} deleted."
delete_button.click(
delete_entry,
inputs=[entry_selector, current_dataset_name, datasets],
outputs=[datasets, dataset_html, entry_selector, message_box]
)
with gr.Tab("Download Dataset"):
download_button = gr.Button("Download Dataset")
download_output = gr.File(label="Download Zip")
def download_dataset(current_dataset_name, datasets):
if not current_dataset_name:
return None, "No dataset selected."
if not datasets[current_dataset_name]:
return None, "Dataset is empty."
zip_buffer = save_dataset_to_zip(current_dataset_name, datasets[current_dataset_name])
return zip_buffer.getvalue(), f"Dataset '{current_dataset_name}' is ready for download."
download_button.click(
download_dataset,
inputs=[current_dataset_name, datasets],
outputs=[download_output, message_box]
)
# Initialize dataset_selector and entry_selector
def initialize_components(datasets):
return gr.update(choices=list(datasets.keys())), gr.update(choices=[])
demo.load(
initialize_components,
inputs=[datasets],
outputs=[dataset_selector, entry_selector]
)
demo.launch()