Spaces:
Runtime error
Runtime error
Commit
Β·
3cb5cab
1
Parent(s):
3aa67a5
Update app.py
Browse files
app.py
CHANGED
|
@@ -22,25 +22,37 @@ model.config.id2label={
|
|
| 22 |
"4": "Openness",}
|
| 23 |
|
| 24 |
def Personality_Detection_from_reviews_submitted (model_input: str) -> Dict[str, float]:
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
model_input = gr.Textbox("Input text here (Note: This model is trained to classify Big Five Personality Traits From Expository text features)", show_label=False)
|
| 45 |
model_output = gr.Label(" Big-Five personality traits Result", num_top_classes=6, show_label=True, label="Big-Five personality traits Labels assigned to this text based on its features")
|
| 46 |
examples = [
|
|
|
|
| 22 |
"4": "Openness",}
|
| 23 |
|
| 24 |
def Personality_Detection_from_reviews_submitted (model_input: str) -> Dict[str, float]:
|
| 25 |
+
if len(model_input)<20:
|
| 26 |
+
ret ={
|
| 27 |
+
"Extroversion": float(0),
|
| 28 |
+
"Neuroticism": float(0),
|
| 29 |
+
"Agreeableness": float(0),
|
| 30 |
+
"Conscientiousness": float(0),
|
| 31 |
+
"Openness": float(0),}
|
| 32 |
+
return ret
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
else:
|
| 37 |
+
# Encoding input data
|
| 38 |
+
dict_custom={}
|
| 39 |
+
Preprocess_part1=model_input[:len(model_input)]
|
| 40 |
+
Preprocess_part2=model_input[len(model_input):]
|
| 41 |
+
dict1=tokenizer.encode_plus(Preprocess_part1,max_length=1024,padding=True,truncation=True)
|
| 42 |
+
dict2=tokenizer.encode_plus(Preprocess_part2,max_length=1024,padding=True,truncation=True)
|
| 43 |
+
dict_custom['input_ids']=[dict1['input_ids'],dict1['input_ids']]
|
| 44 |
+
dict_custom['token_type_ids']=[dict1['token_type_ids'],dict1['token_type_ids']]
|
| 45 |
+
dict_custom['attention_mask']=[dict1['attention_mask'],dict1['attention_mask']]
|
| 46 |
+
outs = model(torch.tensor(dict_custom['input_ids']), token_type_ids=None, attention_mask=torch.tensor(dict_custom['attention_mask']))
|
| 47 |
+
b_logit_pred = outs[0]
|
| 48 |
+
pred_label = torch.sigmoid(b_logit_pred)
|
| 49 |
+
ret ={
|
| 50 |
+
"Extroversion": float(pred_label[0][0]),
|
| 51 |
+
"Neuroticism": float(pred_label[0][1]),
|
| 52 |
+
"Agreeableness": float(pred_label[0][2]),
|
| 53 |
+
"Conscientiousness": float(pred_label[0][3]),
|
| 54 |
+
"Openness": float(pred_label[0][4]),}
|
| 55 |
+
return ret
|
| 56 |
model_input = gr.Textbox("Input text here (Note: This model is trained to classify Big Five Personality Traits From Expository text features)", show_label=False)
|
| 57 |
model_output = gr.Label(" Big-Five personality traits Result", num_top_classes=6, show_label=True, label="Big-Five personality traits Labels assigned to this text based on its features")
|
| 58 |
examples = [
|