thoristhor commited on
Commit
dd23ffe
·
1 Parent(s): bb0476c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -5
app.py CHANGED
@@ -28,8 +28,8 @@ def load_model():
28
  nltk.download('omw-1.4')
29
  ## summary_mod_name = os.environ["summary_mod_name"]
30
  ## question_mod_name = os.environ["question_mod_name"]
31
- summary_mod_name = 't5-small'
32
- question_mod_name = 't5-small'
33
  summary_model = T5ForConditionalGeneration.from_pretrained(summary_mod_name)
34
  summary_tokenizer = T5Tokenizer.from_pretrained(summary_mod_name)
35
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@@ -112,7 +112,6 @@ if raw_text != None and raw_text != '':
112
  st.markdown(html_str , unsafe_allow_html=True)
113
  st.markdown("-----")
114
  questions.append(ques)
115
- output_path = "results/df_quiz_log_file_v1.csv"
116
  res_df = pd.DataFrame({"TimeStamp":[start_time]*len(ans_list),\
117
  "Input":[str(raw_text)]*len(ans_list),\
118
  "Question":questions,"Option1":option1,\
@@ -121,5 +120,4 @@ if raw_text != None and raw_text != '':
121
  "Option4":option4,\
122
  "Correct Answer":ans_list})
123
  res_df.to_csv(output_path, mode='a', index=False, sep="\t", header= not os.path.exists(output_path))
124
- # st.dataframe(pd.read_csv(output_path,sep="\t").tail(5))
125
- csv_downloader(pd.read_csv(output_path,sep="\t"))
 
28
  nltk.download('omw-1.4')
29
  ## summary_mod_name = os.environ["summary_mod_name"]
30
  ## question_mod_name = os.environ["question_mod_name"]
31
+ summary_mod_name = 'pszemraj/long-t5-tglobal-base-16384-book-summary'
32
+ question_mod_name = 'mrm8488/t5-base-finetuned-question-generation-ap'
33
  summary_model = T5ForConditionalGeneration.from_pretrained(summary_mod_name)
34
  summary_tokenizer = T5Tokenizer.from_pretrained(summary_mod_name)
35
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
112
  st.markdown(html_str , unsafe_allow_html=True)
113
  st.markdown("-----")
114
  questions.append(ques)
 
115
  res_df = pd.DataFrame({"TimeStamp":[start_time]*len(ans_list),\
116
  "Input":[str(raw_text)]*len(ans_list),\
117
  "Question":questions,"Option1":option1,\
 
120
  "Option4":option4,\
121
  "Correct Answer":ans_list})
122
  res_df.to_csv(output_path, mode='a', index=False, sep="\t", header= not os.path.exists(output_path))
123
+ # st.dataframe(pd.read_csv(output_path,sep="\t").tail(5))