File size: 4,045 Bytes
0a3c18c
40af609
 
bc71c8e
40af609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e40787
 
 
459b405
40af609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e40787
40af609
 
bc71c8e
 
 
40af609
 
 
 
157ce4b
40af609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157ce4b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import streamlit as st
from textwrap3 import wrap
from flashtext import KeywordProcessor
import torch, random, nltk, string, traceback, sys, os, requests, datetime
import numpy as np
import pandas as pd
from transformers import T5ForConditionalGeneration,T5Tokenizer
import pke
from helper import postprocesstext, summarizer, get_nouns_multipartite, get_keywords,\
    get_question, get_related_word, get_final_option_list, load_raw_text


def set_seed(seed: int):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)

set_seed(42)

@st.cache(allow_output_mutation = True)
def load_model():
    nltk.download('punkt')
    nltk.download('brown')
    nltk.download('wordnet')
    nltk.download('stopwords')
    nltk.download('wordnet')
    nltk.download('omw-1.4')
    ## summary_mod_name = os.environ["summary_mod_name"]
    ## question_mod_name = os.environ["question_mod_name"]
    summary_mod_name = "t5-small"
    question_mod_name= "t5-small"
    summary_model = T5ForConditionalGeneration.from_pretrained(summary_mod_name)
    summary_tokenizer = T5Tokenizer.from_pretrained(summary_mod_name)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    summary_model = summary_model.to(device)
    question_model = T5ForConditionalGeneration.from_pretrained(question_mod_name)
    question_tokenizer = T5Tokenizer.from_pretrained(question_mod_name)
    question_model = question_model.to(device)
    return summary_model, summary_tokenizer, question_tokenizer, question_model 

from nltk.corpus import wordnet as wn
from nltk.tokenize import sent_tokenize
from nltk.corpus import stopwords


def load_file():
    """Load text from file"""
    uploaded_file = st.file_uploader("Upload Files",type=['txt'])
    if uploaded_file is not None:
        if uploaded_file.type == "text/plain":
            raw_text = str(uploaded_file.read(),"utf-8")
        return raw_text

# Loading Model
summary_model, summary_tokenizer, question_tokenizer, question_model = load_model()

# App title and description
st.title("P's Prototype")
st.write("Upload text, get exam")


# Load file

default_text = load_raw_text()
raw_text = st.text_area("load text", default_text, height=250, max_chars=1000000, )

# raw_text = load_file()
start_time = str(datetime.datetime.now())
if raw_text != None and raw_text != '':
    summary_text = summarizer(raw_text,summary_model,summary_tokenizer)
    ans_list =  get_keywords(raw_text,summary_text)
    #print("Ans list: {}".format(ans_list))
    questions = []
    option1=[]
    option2=[]
    option3=[]
    option4=[]
    for idx,ans in enumerate(ans_list):
        #print("IDX: {}, ANS: {}".format(idx, ans))
        ques = get_question(summary_text,ans,question_model,question_tokenizer)
        other_options = get_related_word(ans)
        final_options, ans_index = get_final_option_list(ans,other_options)
        option1.append(final_options[0])
        option2.append(final_options[1])
        option3.append(final_options[2])
        option4.append(final_options[3])                   
        if ques not in questions:
            html_str = f"""
            <div>
            <p>
            {idx+1}: <b> {ques} </b>
            </p>
            </div>
            """
            html_str += f' <p style="color:Green;"><b> {final_options[0]} </b></p> ' if ans_index == 0 else f' <p><b> {final_options[0]} </b></p> '
            html_str += f' <p style="color:Green;"><b> {final_options[1]} </b></p> ' if ans_index == 1 else f' <p><b> {final_options[1]} </b></p> '
            html_str += f' <p style="color:Green;"><b> {final_options[2]} </b></p> ' if ans_index == 2 else f' <p><b> {final_options[2]} </b></p> '
            html_str += f' <p style="color:Green;"><b> {final_options[3]} </b></p> ' if ans_index == 3 else f' <p><b> {final_options[3]} </b></p> '
            html_str += f"""
            """
            st.markdown(html_str , unsafe_allow_html=True)
            st.markdown("-----")
        questions.append(ques)