File size: 4,587 Bytes
9f23ec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import numpy as np
import pandas as pd
import re

from pathlib import Path


def read_and_preprocess_spreadsheet():
    # path = list(Path.cwd().glob('Rori_Framework_v1.xlsx'))
    DATA_DIR = Path(__file__).parent.parent / "mathtext_fastapi" / "data" / "Rori_Framework_v1.xlsx"
    script_df = pd.read_excel(DATA_DIR, engine='openpyxl')
    script_df.columns = script_df.columns[:2].tolist() + script_df.columns[2:11].astype(int).astype(str).tolist() + script_df.columns[11:].tolist()
    script_df.fillna('', inplace=True)
    return script_df


def build_horizontal_transitions_by_row(direction, skill_code, row):
    match_arr = []
    sideways_transitions = []

    second_match = match+1
    if direction == 'left':
        second_match = match-1

    for i in range(9):
        # Grade column
        current_grade = i+1
        if row[current_grade].lower().strip() == 'x':
            match_arr.append(i)
            
    for match in match_arr:
        if match_arr[-1] != match:
            sideways_transitions.append([
                direction,
                f"{skill_code}_G{match}",
                f"{skill_code}_G{second_match}"
            ])
    return sideways_transitions


def extract_skill_code(skill):
    pattern = r'[A-Z][0-9]\.\d+\.\d+'
    result = re.search(pattern, skill)
    return result.group()


def build_horizontal_transitions(script_df):
    horizontal_transitions = []
    for index, row in script_df.iterrows():     
        skill_code = extract_skill_code(row['Knowledge or Skill'])

        rightward_matches = []
        for i in range(9):
            # Grade column
            current_grade = i+1
            if row[current_grade].lower().strip() == 'x':
                rightward_matches.append(i)
            
        for match in rightward_matches:
            if rightward_matches[-1] != match:
                horizontal_transitions.append([
                    "right",
                    f"{skill_code}_G{match}",
                    f"{skill_code}_G{match+1}"
                ])

        leftward_matches = []
        for i in reversed(range(9)):
            current_grade = i
            if row[current_grade].lower().strip() == 'x':
                leftward_matches.append(i)

        for match in leftward_matches:
            if leftward_matches[0] != match:
                horizontal_transitions.append([
                    "left",
                    f"{skill_code}_G{match}",
                    f"{skill_code}_G{match-1}"
                ])

    return horizontal_transitions


def gather_all_vertical_matches(script_df):
    all_matches = []
    columns = ['1', '2', '3', '4', '5', '6', '7', '8', '9']

    for column in columns:
        for index, value in script_df[column].iteritems():
            row_num = index + 1
            if value == 'x':
                # Extract skill code
                skill_code = extract_skill_code(
                    script_df['Knowledge or Skill'][row_num-1]
                )

                all_matches.append([skill_code, column])
    return all_matches


def build_vertical_transitions(script_df):
    vertical_transitions = []

    all_matches = gather_all_vertical_matches(script_df)

    # Downward
    for index, match in enumerate(all_matches):
        skill = match[0]
        row_num = match[1]
        if all_matches[-1] != match:
            vertical_transitions.append([
                "down",
                f"{skill}_G{row_num}",
                f"{all_matches[index+1][0]}_G{row_num}"
            ])

    # Upward
    for index, match in reversed(list(enumerate(all_matches))):
        skill = match[0]
        row_num = match[1]
        if all_matches[0] != match:
            vertical_transitions.append([
                "up",
                f"{skill}_G{row_num}",
                f"{all_matches[index-1][0]}_G{row_num}"
            ])
    
    return vertical_transitions


def build_all_states(all_transitions):
    all_states = []
    for transition in all_transitions:
        for index, state in enumerate(transition):
            if index == 0:
                continue   
            if state not in all_states:
                all_states.append(state)
    return all_states


def build_curriculum_logic():
    script_df = read_and_preprocess_spreadsheet()
    horizontal_transitions = build_horizontal_transitions(script_df)
    vertical_transitions = build_vertical_transitions(script_df)
    all_transitions = horizontal_transitions + vertical_transitions
    all_states = build_all_states(all_transitions)
    return all_states, all_transitions