Spaces:
Runtime error
Runtime error
File size: 5,322 Bytes
46f5320 0128fae 46f5320 28bef93 5f4baa5 46f5320 05912c7 5fb1d22 185d33a 12058fc 185d33a 28bef93 46f5320 335cdd4 05912c7 4cf8d83 ac44250 12058fc ac44250 12058fc ac44250 836e833 ac44250 12058fc ac44250 ff85563 ac44250 4cf8d83 ff85563 4cf8d83 8f1bf52 335cdd4 12058fc ff85563 335cdd4 12058fc ff85563 335cdd4 12058fc 335cdd4 3cffb60 185d33a 15a3232 28bef93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
"""FastAPI endpoint
To run locally use 'uvicorn app:app --host localhost --port 7860'
"""
import ast
import re
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from mathtext.sentiment import sentiment
from mathtext.text2int import text2int
from pydantic import BaseModel
from mathtext_fastapi.logging import prepare_message_data_for_logging
from mathtext_fastapi.conversation_manager import manage_conversation_response
from mathtext_fastapi.nlu import evaluate_message_with_nlu
from scripts.quiz.generators import start_interactive_math
from scripts.quiz.hints import generate_hint
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")
class Text(BaseModel):
content: str = ""
@app.get("/")
def home(request: Request):
return templates.TemplateResponse("home.html", {"request": request})
@app.post("/hello")
def hello(content: Text = None):
content = {"message": f"Hello {content.content}!"}
return JSONResponse(content=content)
@app.post("/sentiment-analysis")
def sentiment_analysis_ep(content: Text = None):
ml_response = sentiment(content.content)
content = {"message": ml_response}
return JSONResponse(content=content)
@app.post("/text2int")
def text2int_ep(content: Text = None):
ml_response = text2int(content.content)
content = {"message": ml_response}
return JSONResponse(content=content)
@app.post("/manager")
async def programmatic_message_manager(request: Request):
"""
Calls conversation management function to determine the next state
Input
request.body: dict - message data for the most recent user response
{
"author_id": "+47897891",
"contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09",
"author_type": "OWNER",
"message_body": "a test message",
"message_direction": "inbound",
"message_id": "ABJAK64jlk3-agjkl2QHFAFH",
"message_inserted_at": "2022-07-05T04:00:34.03352Z",
"message_updated_at": "2023-02-14T03:54:19.342950Z",
}
Output
context: dict - the information for the current state
{
"user": "47897891",
"state": "welcome-message-state",
"bot_message": "Welcome to Rori!",
"user_message": "",
"type": "ask"
}
"""
data_dict = await request.json()
context = manage_conversation_response(data_dict)
return JSONResponse(context)
@app.post("/nlu")
async def evaluate_user_message_with_nlu_api(request: Request):
""" Calls nlu evaluation and returns the nlu_response
Input
- request.body: json - message data for the most recent user response
Output
- int_data_dict or sent_data_dict: dict - the type of NLU run and result
{'type':'integer', 'data': '8'}
{'type':'sentiment', 'data': 'negative'}
"""
data_dict = await request.json()
message_data = data_dict.get('message_data', '')
nlu_response = evaluate_message_with_nlu(message_data)
return JSONResponse(content=nlu_response)
@app.post("/question")
async def ask_math_question(request: Request):
"""Generates a question and returns it as response along with question data
Input
request.body: json - amount of correct and incorrect answers in the account
{
'number_correct': 0,
'number_incorrect': 0
}
Output
context: dict - the information for the current state
{
'text': 'What is 1+2?',
'question_numbers': [1,2,3,4], #3 or 4 numbers
'right_answer': 3,
'number_correct': 0,
'number_incorrect': 0,
'hints_used': 0
}
"""
data_dict = await request.json()
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
number_correct = message_data['number_correct']
number_incorrect = message_data['number_incorrect']
return JSONResponse(start_interactive_math(number_correct, number_incorrect))
@app.post("/hint")
async def get_hint(request: Request):
"""Generates a hint and returns it as response along with hint data
Input
request.body: json - amount of correct and incorrect answers in the account
{
'question_numbers': [1,2,3,4], # 3 or 4 numbers
'right_answer': 3,
'user_answer': 10,
'number_correct': 0,
'number_incorrect': 0,
'hints_used': 0
}
Output
context: dict - the information for the current state
{
'text': 'What is 1+2?',
'question_numbers': [1,2,3], #3 or 4 numbers
'right_answer': 3,
'number_correct': 0,
'number_incorrect': 0,
'hints_used': 0
}
"""
data_dict = await request.json()
message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
question_numbers = message_data['number_correct']
question_numbers = message_data['number_correct']
number_correct = message_data['number_correct']
number_incorrect = message_data['number_incorrect']
hints_used = message_data['hints_used']
return JSONResponse(generate_hint(question_numbers, number_correct, number_incorrect, hints_used))
|