File size: 5,322 Bytes
46f5320
0128fae
46f5320
28bef93
5f4baa5
46f5320
 
 
 
 
05912c7
 
5fb1d22
 
185d33a
12058fc
185d33a
28bef93
 
46f5320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335cdd4
05912c7
4cf8d83
 
ac44250
12058fc
ac44250
 
12058fc
ac44250
836e833
 
 
 
 
 
 
 
ac44250
 
 
12058fc
ac44250
ff85563
 
 
 
ac44250
 
 
4cf8d83
ff85563
4cf8d83
 
8f1bf52
335cdd4
 
12058fc
ff85563
335cdd4
12058fc
ff85563
335cdd4
12058fc
335cdd4
 
 
3cffb60
 
185d33a
15a3232
28bef93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
"""FastAPI endpoint
To run locally use 'uvicorn app:app --host localhost --port 7860'
"""
import ast
import re

from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from mathtext.sentiment import sentiment
from mathtext.text2int import text2int
from pydantic import BaseModel

from mathtext_fastapi.logging import prepare_message_data_for_logging
from mathtext_fastapi.conversation_manager import manage_conversation_response
from mathtext_fastapi.nlu import evaluate_message_with_nlu
from scripts.quiz.generators import start_interactive_math
from scripts.quiz.hints import generate_hint

app = FastAPI()

app.mount("/static", StaticFiles(directory="static"), name="static")

templates = Jinja2Templates(directory="templates")


class Text(BaseModel):
    content: str = ""


@app.get("/")
def home(request: Request):
    return templates.TemplateResponse("home.html", {"request": request})


@app.post("/hello")
def hello(content: Text = None):
    content = {"message": f"Hello {content.content}!"}
    return JSONResponse(content=content)


@app.post("/sentiment-analysis")
def sentiment_analysis_ep(content: Text = None):
    ml_response = sentiment(content.content)
    content = {"message": ml_response}
    return JSONResponse(content=content)


@app.post("/text2int")
def text2int_ep(content: Text = None):
    ml_response = text2int(content.content)
    content = {"message": ml_response}
    return JSONResponse(content=content)


@app.post("/manager")
async def programmatic_message_manager(request: Request):
    """
    Calls conversation management function to determine the next state

    Input
    request.body: dict - message data for the most recent user response
    {
        "author_id": "+47897891",
        "contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09",
        "author_type": "OWNER",
        "message_body": "a test message",
        "message_direction": "inbound",
        "message_id": "ABJAK64jlk3-agjkl2QHFAFH",
        "message_inserted_at": "2022-07-05T04:00:34.03352Z",
        "message_updated_at": "2023-02-14T03:54:19.342950Z",
    }

    Output
    context: dict - the information for the current state
    {
        "user": "47897891",
        "state": "welcome-message-state",
        "bot_message": "Welcome to Rori!",
        "user_message": "",
        "type": "ask"
    }
    """
    data_dict = await request.json()
    context = manage_conversation_response(data_dict)
    return JSONResponse(context)


@app.post("/nlu")
async def evaluate_user_message_with_nlu_api(request: Request):
    """ Calls nlu evaluation and returns the nlu_response

    Input
    - request.body: json - message data for the most recent user response

    Output
    - int_data_dict or sent_data_dict: dict - the type of NLU run and result
      {'type':'integer', 'data': '8'}
      {'type':'sentiment', 'data': 'negative'}
    """
    data_dict = await request.json()
    message_data = data_dict.get('message_data', '')
    nlu_response = evaluate_message_with_nlu(message_data)
    return JSONResponse(content=nlu_response)


@app.post("/question")
async def ask_math_question(request: Request):
    """Generates a question and returns it as response along with question data
    
    Input
    request.body: json - amount of correct and incorrect answers in the account
    {
        'number_correct': 0,
        'number_incorrect': 0
    }

    Output
    context: dict - the information for the current state
    {
        'text': 'What is 1+2?',
        'question_numbers': [1,2,3,4], #3 or 4 numbers
        'right_answer': 3,
        'number_correct': 0,
        'number_incorrect': 0,
        'hints_used': 0
    }
    """
    data_dict = await request.json()
    message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
    number_correct = message_data['number_correct']
    number_incorrect = message_data['number_incorrect']

    return JSONResponse(start_interactive_math(number_correct, number_incorrect))


@app.post("/hint")
async def get_hint(request: Request):
    """Generates a hint and returns it as response along with hint data
    
    Input
    request.body: json - amount of correct and incorrect answers in the account
    {
        'question_numbers': [1,2,3,4], # 3 or 4 numbers
        'right_answer': 3,
        'user_answer': 10,
        'number_correct': 0,
        'number_incorrect': 0,
        'hints_used': 0
    }

    Output
    context: dict - the information for the current state
    {
        'text': 'What is 1+2?',
        'question_numbers': [1,2,3], #3 or 4 numbers
        'right_answer': 3,
        'number_correct': 0,
        'number_incorrect': 0,
        'hints_used': 0
    }
    """
    data_dict = await request.json()
    message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', ''))
    question_numbers = message_data['number_correct']
    question_numbers = message_data['number_correct']
    number_correct = message_data['number_correct']
    number_incorrect = message_data['number_incorrect']
    hints_used = message_data['hints_used']

    return JSONResponse(generate_hint(question_numbers, number_correct, number_incorrect, hints_used))