import json import os import sqlite3 from datetime import datetime from pathlib import Path from threading import Lock import huggingface_hub as hf import pandas as pd try: # absolute imports when installed from trackio.commit_scheduler import CommitScheduler from trackio.dummy_commit_scheduler import DummyCommitScheduler from trackio.utils import TRACKIO_DIR except Exception: # relative imports for local execution on Spaces from commit_scheduler import CommitScheduler from dummy_commit_scheduler import DummyCommitScheduler from utils import TRACKIO_DIR class SQLiteStorage: _dataset_import_attempted = False _current_scheduler: CommitScheduler | DummyCommitScheduler | None = None _scheduler_lock = Lock() @staticmethod def _get_connection(db_path: Path) -> sqlite3.Connection: conn = sqlite3.connect(str(db_path)) conn.row_factory = sqlite3.Row return conn @staticmethod def get_project_db_filename(project: str) -> Path: """Get the database filename for a specific project.""" safe_project_name = "".join( c for c in project if c.isalnum() or c in ("-", "_") ).rstrip() if not safe_project_name: safe_project_name = "default" return f"{safe_project_name}.db" @staticmethod def get_project_db_path(project: str) -> Path: """Get the database path for a specific project.""" filename = SQLiteStorage.get_project_db_filename(project) return TRACKIO_DIR / filename @staticmethod def init_db(project: str) -> Path: """ Initialize the SQLite database with required tables. If there is a dataset ID provided, copies from that dataset instead. Returns the database path. """ db_path = SQLiteStorage.get_project_db_path(project) db_path.parent.mkdir(parents=True, exist_ok=True) with SQLiteStorage.get_scheduler().lock: with sqlite3.connect(db_path) as conn: cursor = conn.cursor() cursor.execute(""" CREATE TABLE IF NOT EXISTS metrics ( id INTEGER PRIMARY KEY AUTOINCREMENT, timestamp TEXT NOT NULL, run_name TEXT NOT NULL, step INTEGER NOT NULL, metrics TEXT NOT NULL ) """) cursor.execute( """ CREATE INDEX IF NOT EXISTS idx_metrics_run_step ON metrics(run_name, step) """ ) conn.commit() return db_path @staticmethod def export_to_parquet(): """ Exports all projects' DB files as Parquet under the same path but with extension ".parquet". """ # don't attempt to export (potentially wrong/blank) data before importing for the first time if not SQLiteStorage._dataset_import_attempted: return all_paths = os.listdir(TRACKIO_DIR) db_paths = [f for f in all_paths if f.endswith(".db")] for db_path in db_paths: db_path = TRACKIO_DIR / db_path parquet_path = db_path.with_suffix(".parquet") if (not parquet_path.exists()) or ( db_path.stat().st_mtime > parquet_path.stat().st_mtime ): with sqlite3.connect(db_path) as conn: df = pd.read_sql("SELECT * from metrics", conn) df.to_parquet(parquet_path) @staticmethod def import_from_parquet(): """ Imports to all DB files that have matching files under the same path but with extension ".parquet". """ all_paths = os.listdir(TRACKIO_DIR) parquet_paths = [f for f in all_paths if f.endswith(".parquet")] for parquet_path in parquet_paths: parquet_path = TRACKIO_DIR / parquet_path db_path = parquet_path.with_suffix(".db") df = pd.read_parquet(parquet_path) with sqlite3.connect(db_path) as conn: df.to_sql("metrics", conn, if_exists="replace", index=False) @staticmethod def get_scheduler(): """ Get the scheduler for the database based on the environment variables. This applies to both local and Spaces. """ with SQLiteStorage._scheduler_lock: if SQLiteStorage._current_scheduler is not None: return SQLiteStorage._current_scheduler hf_token = os.environ.get("HF_TOKEN") dataset_id = os.environ.get("TRACKIO_DATASET_ID") space_repo_name = os.environ.get("SPACE_REPO_NAME") if dataset_id is None or space_repo_name is None: scheduler = DummyCommitScheduler() else: scheduler = CommitScheduler( repo_id=dataset_id, repo_type="dataset", folder_path=TRACKIO_DIR, private=True, allow_patterns="*.parquet", squash_history=True, token=hf_token, on_before_commit=SQLiteStorage.export_to_parquet, ) SQLiteStorage._current_scheduler = scheduler return scheduler @staticmethod def log(project: str, run: str, metrics: dict, step: int | None = None): """ Safely log metrics to the database. Before logging, this method will ensure the database exists and is set up with the correct tables. It also uses the scheduler to lock the database so that there is no race condition when logging / syncing to the Hugging Face Dataset. """ db_path = SQLiteStorage.init_db(project) with SQLiteStorage.get_scheduler().lock: with SQLiteStorage._get_connection(db_path) as conn: cursor = conn.cursor() cursor.execute( """ SELECT MAX(step) FROM metrics WHERE run_name = ? """, (run,), ) last_step = cursor.fetchone()[0] if step is None: current_step = 0 if last_step is None else last_step + 1 else: current_step = step current_timestamp = datetime.now().isoformat() cursor.execute( """ INSERT INTO metrics (timestamp, run_name, step, metrics) VALUES (?, ?, ?, ?) """, ( current_timestamp, run, current_step, json.dumps(metrics), ), ) conn.commit() @staticmethod def bulk_log( project: str, run: str, metrics_list: list[dict], steps: list[int] | None = None, timestamps: list[str] | None = None, ): """Bulk log metrics to the database with specified steps and timestamps.""" if not metrics_list: return if steps is None: steps = list(range(len(metrics_list))) if timestamps is None: timestamps = [datetime.now().isoformat()] * len(metrics_list) if len(metrics_list) != len(steps) or len(metrics_list) != len(timestamps): raise ValueError( "metrics_list, steps, and timestamps must have the same length" ) db_path = SQLiteStorage.init_db(project) with SQLiteStorage.get_scheduler().lock: with SQLiteStorage._get_connection(db_path) as conn: cursor = conn.cursor() data = [] for i, metrics in enumerate(metrics_list): data.append( ( timestamps[i], run, steps[i], json.dumps(metrics), ) ) cursor.executemany( """ INSERT INTO metrics (timestamp, run_name, step, metrics) VALUES (?, ?, ?, ?) """, data, ) conn.commit() @staticmethod def get_metrics(project: str, run: str) -> list[dict]: """Retrieve metrics for a specific run. The metrics also include the step count (int) and the timestamp (datetime object).""" db_path = SQLiteStorage.get_project_db_path(project) if not db_path.exists(): return [] with SQLiteStorage._get_connection(db_path) as conn: cursor = conn.cursor() cursor.execute( """ SELECT timestamp, step, metrics FROM metrics WHERE run_name = ? ORDER BY timestamp """, (run,), ) rows = cursor.fetchall() results = [] for row in rows: metrics = json.loads(row["metrics"]) metrics["timestamp"] = row["timestamp"] metrics["step"] = row["step"] results.append(metrics) return results @staticmethod def load_from_dataset(): dataset_id = os.environ.get("TRACKIO_DATASET_ID") space_repo_name = os.environ.get("SPACE_REPO_NAME") if dataset_id is not None and space_repo_name is not None: hfapi = hf.HfApi() updated = False if not TRACKIO_DIR.exists(): TRACKIO_DIR.mkdir(parents=True, exist_ok=True) with SQLiteStorage.get_scheduler().lock: try: files = hfapi.list_repo_files(dataset_id, repo_type="dataset") for file in files: if not file.endswith(".parquet"): continue hf.hf_hub_download( dataset_id, file, repo_type="dataset", local_dir=TRACKIO_DIR ) updated = True except hf.errors.EntryNotFoundError: pass except hf.errors.RepositoryNotFoundError: pass if updated: SQLiteStorage.import_from_parquet() SQLiteStorage._dataset_import_attempted = True @staticmethod def get_projects() -> list[str]: """ Get list of all projects by scanning the database files in the trackio directory. """ if not SQLiteStorage._dataset_import_attempted: SQLiteStorage.load_from_dataset() projects: set[str] = set() if not TRACKIO_DIR.exists(): return [] for db_file in TRACKIO_DIR.glob("*.db"): project_name = db_file.stem projects.add(project_name) return sorted(projects) @staticmethod def get_runs(project: str) -> list[str]: """Get list of all runs for a project.""" db_path = SQLiteStorage.get_project_db_path(project) if not db_path.exists(): return [] with SQLiteStorage._get_connection(db_path) as conn: cursor = conn.cursor() cursor.execute( "SELECT DISTINCT run_name FROM metrics", ) return [row[0] for row in cursor.fetchall()] @staticmethod def get_max_steps_for_runs(project: str, runs: list[str]) -> dict[str, int]: """Efficiently get the maximum step for multiple runs in a single query.""" db_path = SQLiteStorage.get_project_db_path(project) if not db_path.exists(): return {run: 0 for run in runs} with SQLiteStorage._get_connection(db_path) as conn: cursor = conn.cursor() placeholders = ",".join("?" * len(runs)) cursor.execute( f""" SELECT run_name, MAX(step) as max_step FROM metrics WHERE run_name IN ({placeholders}) GROUP BY run_name """, runs, ) results = {run: 0 for run in runs} # Default to 0 for runs with no data for row in cursor.fetchall(): results[row["run_name"]] = row["max_step"] return results def finish(self): """Cleanup when run is finished.""" pass