Spaces:
Sleeping
Sleeping
File size: 12,824 Bytes
531b2b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import json
import os
import sqlite3
from datetime import datetime
from pathlib import Path
from threading import Lock
import huggingface_hub as hf
import pandas as pd
try: # absolute imports when installed
from trackio.commit_scheduler import CommitScheduler
from trackio.dummy_commit_scheduler import DummyCommitScheduler
from trackio.utils import TRACKIO_DIR
except Exception: # relative imports for local execution on Spaces
from commit_scheduler import CommitScheduler
from dummy_commit_scheduler import DummyCommitScheduler
from utils import TRACKIO_DIR
class SQLiteStorage:
_dataset_import_attempted = False
_current_scheduler: CommitScheduler | DummyCommitScheduler | None = None
_scheduler_lock = Lock()
@staticmethod
def _get_connection(db_path: Path) -> sqlite3.Connection:
conn = sqlite3.connect(str(db_path))
conn.row_factory = sqlite3.Row
return conn
@staticmethod
def get_project_db_filename(project: str) -> Path:
"""Get the database filename for a specific project."""
safe_project_name = "".join(
c for c in project if c.isalnum() or c in ("-", "_")
).rstrip()
if not safe_project_name:
safe_project_name = "default"
return f"{safe_project_name}.db"
@staticmethod
def get_project_db_path(project: str) -> Path:
"""Get the database path for a specific project."""
filename = SQLiteStorage.get_project_db_filename(project)
return TRACKIO_DIR / filename
@staticmethod
def init_db(project: str) -> Path:
"""
Initialize the SQLite database with required tables.
If there is a dataset ID provided, copies from that dataset instead.
Returns the database path.
"""
db_path = SQLiteStorage.get_project_db_path(project)
db_path.parent.mkdir(parents=True, exist_ok=True)
with SQLiteStorage.get_scheduler().lock:
with sqlite3.connect(db_path) as conn:
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS metrics (
id INTEGER PRIMARY KEY AUTOINCREMENT,
timestamp TEXT NOT NULL,
run_name TEXT NOT NULL,
step INTEGER NOT NULL,
metrics TEXT NOT NULL
)
""")
cursor.execute(
"""
CREATE INDEX IF NOT EXISTS idx_metrics_run_step
ON metrics(run_name, step)
"""
)
conn.commit()
return db_path
@staticmethod
def export_to_parquet():
"""
Exports all projects' DB files as Parquet under the same path but with extension ".parquet".
"""
# don't attempt to export (potentially wrong/blank) data before importing for the first time
if not SQLiteStorage._dataset_import_attempted:
return
all_paths = os.listdir(TRACKIO_DIR)
db_paths = [f for f in all_paths if f.endswith(".db")]
for db_path in db_paths:
db_path = TRACKIO_DIR / db_path
parquet_path = db_path.with_suffix(".parquet")
if (not parquet_path.exists()) or (
db_path.stat().st_mtime > parquet_path.stat().st_mtime
):
with sqlite3.connect(db_path) as conn:
df = pd.read_sql("SELECT * from metrics", conn)
df.to_parquet(parquet_path)
@staticmethod
def import_from_parquet():
"""
Imports to all DB files that have matching files under the same path but with extension ".parquet".
"""
all_paths = os.listdir(TRACKIO_DIR)
parquet_paths = [f for f in all_paths if f.endswith(".parquet")]
for parquet_path in parquet_paths:
parquet_path = TRACKIO_DIR / parquet_path
db_path = parquet_path.with_suffix(".db")
df = pd.read_parquet(parquet_path)
with sqlite3.connect(db_path) as conn:
df.to_sql("metrics", conn, if_exists="replace", index=False)
@staticmethod
def get_scheduler():
"""
Get the scheduler for the database based on the environment variables.
This applies to both local and Spaces.
"""
with SQLiteStorage._scheduler_lock:
if SQLiteStorage._current_scheduler is not None:
return SQLiteStorage._current_scheduler
hf_token = os.environ.get("HF_TOKEN")
dataset_id = os.environ.get("TRACKIO_DATASET_ID")
space_repo_name = os.environ.get("SPACE_REPO_NAME")
if dataset_id is None or space_repo_name is None:
scheduler = DummyCommitScheduler()
else:
scheduler = CommitScheduler(
repo_id=dataset_id,
repo_type="dataset",
folder_path=TRACKIO_DIR,
private=True,
allow_patterns="*.parquet",
squash_history=True,
token=hf_token,
on_before_commit=SQLiteStorage.export_to_parquet,
)
SQLiteStorage._current_scheduler = scheduler
return scheduler
@staticmethod
def log(project: str, run: str, metrics: dict, step: int | None = None):
"""
Safely log metrics to the database. Before logging, this method will ensure the database exists
and is set up with the correct tables. It also uses the scheduler to lock the database so
that there is no race condition when logging / syncing to the Hugging Face Dataset.
"""
db_path = SQLiteStorage.init_db(project)
with SQLiteStorage.get_scheduler().lock:
with SQLiteStorage._get_connection(db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"""
SELECT MAX(step)
FROM metrics
WHERE run_name = ?
""",
(run,),
)
last_step = cursor.fetchone()[0]
if step is None:
current_step = 0 if last_step is None else last_step + 1
else:
current_step = step
current_timestamp = datetime.now().isoformat()
cursor.execute(
"""
INSERT INTO metrics
(timestamp, run_name, step, metrics)
VALUES (?, ?, ?, ?)
""",
(
current_timestamp,
run,
current_step,
json.dumps(metrics),
),
)
conn.commit()
@staticmethod
def bulk_log(
project: str,
run: str,
metrics_list: list[dict],
steps: list[int] | None = None,
timestamps: list[str] | None = None,
):
"""Bulk log metrics to the database with specified steps and timestamps."""
if not metrics_list:
return
if steps is None:
steps = list(range(len(metrics_list)))
if timestamps is None:
timestamps = [datetime.now().isoformat()] * len(metrics_list)
if len(metrics_list) != len(steps) or len(metrics_list) != len(timestamps):
raise ValueError(
"metrics_list, steps, and timestamps must have the same length"
)
db_path = SQLiteStorage.init_db(project)
with SQLiteStorage.get_scheduler().lock:
with SQLiteStorage._get_connection(db_path) as conn:
cursor = conn.cursor()
data = []
for i, metrics in enumerate(metrics_list):
data.append(
(
timestamps[i],
run,
steps[i],
json.dumps(metrics),
)
)
cursor.executemany(
"""
INSERT INTO metrics
(timestamp, run_name, step, metrics)
VALUES (?, ?, ?, ?)
""",
data,
)
conn.commit()
@staticmethod
def get_metrics(project: str, run: str) -> list[dict]:
"""Retrieve metrics for a specific run. The metrics also include the step count (int) and the timestamp (datetime object)."""
db_path = SQLiteStorage.get_project_db_path(project)
if not db_path.exists():
return []
with SQLiteStorage._get_connection(db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"""
SELECT timestamp, step, metrics
FROM metrics
WHERE run_name = ?
ORDER BY timestamp
""",
(run,),
)
rows = cursor.fetchall()
results = []
for row in rows:
metrics = json.loads(row["metrics"])
metrics["timestamp"] = row["timestamp"]
metrics["step"] = row["step"]
results.append(metrics)
return results
@staticmethod
def load_from_dataset():
dataset_id = os.environ.get("TRACKIO_DATASET_ID")
space_repo_name = os.environ.get("SPACE_REPO_NAME")
if dataset_id is not None and space_repo_name is not None:
hfapi = hf.HfApi()
updated = False
if not TRACKIO_DIR.exists():
TRACKIO_DIR.mkdir(parents=True, exist_ok=True)
with SQLiteStorage.get_scheduler().lock:
try:
files = hfapi.list_repo_files(dataset_id, repo_type="dataset")
for file in files:
if not file.endswith(".parquet"):
continue
hf.hf_hub_download(
dataset_id, file, repo_type="dataset", local_dir=TRACKIO_DIR
)
updated = True
except hf.errors.EntryNotFoundError:
pass
except hf.errors.RepositoryNotFoundError:
pass
if updated:
SQLiteStorage.import_from_parquet()
SQLiteStorage._dataset_import_attempted = True
@staticmethod
def get_projects() -> list[str]:
"""
Get list of all projects by scanning the database files in the trackio directory.
"""
if not SQLiteStorage._dataset_import_attempted:
SQLiteStorage.load_from_dataset()
projects: set[str] = set()
if not TRACKIO_DIR.exists():
return []
for db_file in TRACKIO_DIR.glob("*.db"):
project_name = db_file.stem
projects.add(project_name)
return sorted(projects)
@staticmethod
def get_runs(project: str) -> list[str]:
"""Get list of all runs for a project."""
db_path = SQLiteStorage.get_project_db_path(project)
if not db_path.exists():
return []
with SQLiteStorage._get_connection(db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"SELECT DISTINCT run_name FROM metrics",
)
return [row[0] for row in cursor.fetchall()]
@staticmethod
def get_max_steps_for_runs(project: str, runs: list[str]) -> dict[str, int]:
"""Efficiently get the maximum step for multiple runs in a single query."""
db_path = SQLiteStorage.get_project_db_path(project)
if not db_path.exists():
return {run: 0 for run in runs}
with SQLiteStorage._get_connection(db_path) as conn:
cursor = conn.cursor()
placeholders = ",".join("?" * len(runs))
cursor.execute(
f"""
SELECT run_name, MAX(step) as max_step
FROM metrics
WHERE run_name IN ({placeholders})
GROUP BY run_name
""",
runs,
)
results = {run: 0 for run in runs} # Default to 0 for runs with no data
for row in cursor.fetchall():
results[row["run_name"]] = row["max_step"]
return results
def finish(self):
"""Cleanup when run is finished."""
pass
|